Spaces:
Sleeping
Sleeping
File size: 4,398 Bytes
06f26d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
import os
import torch
from torch import nn
from copy import deepcopy
from facelib.utils import load_file_from_url
from facelib.utils import download_pretrained_models
from facelib.detection.yolov5face.models.common import Conv
from .retinaface.retinaface import RetinaFace
from .yolov5face.face_detector import YoloDetector
def init_detection_model(model_name, half=False, device='cuda'):
if 'retinaface' in model_name:
model = init_retinaface_model(model_name, half, device)
elif 'YOLOv5' in model_name:
model = init_yolov5face_model(model_name, device)
else:
raise NotImplementedError(f'{model_name} is not implemented.')
return model
def init_retinaface_model(model_name, half=False, device='cuda'):
if model_name == 'retinaface_resnet50':
model = RetinaFace(network_name='resnet50', half=half)
model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth'
elif model_name == 'retinaface_mobile0.25':
model = RetinaFace(network_name='mobile0.25', half=half)
model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_mobilenet0.25_Final.pth'
else:
raise NotImplementedError(f'{model_name} is not implemented.')
model_path = load_file_from_url(url=model_url, model_dir='weights/facelib', progress=True, file_name=None)
load_net = torch.load(model_path, map_location=lambda storage, loc: storage)
# remove unnecessary 'module.'
for k, v in deepcopy(load_net).items():
if k.startswith('module.'):
load_net[k[7:]] = v
load_net.pop(k)
model.load_state_dict(load_net, strict=True)
model.eval()
model = model.to(device)
return model
def init_yolov5face_model(model_name, device='cuda'):
if model_name == 'YOLOv5l':
model = YoloDetector(config_name='facelib/detection/yolov5face/models/yolov5l.yaml', device=device)
model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/yolov5l-face.pth'
elif model_name == 'YOLOv5n':
model = YoloDetector(config_name='facelib/detection/yolov5face/models/yolov5n.yaml', device=device)
model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/yolov5n-face.pth'
else:
raise NotImplementedError(f'{model_name} is not implemented.')
model_path = load_file_from_url(url=model_url, model_dir='weights/facelib', progress=True, file_name=None)
load_net = torch.load(model_path, map_location=lambda storage, loc: storage)
model.detector.load_state_dict(load_net, strict=True)
model.detector.eval()
model.detector = model.detector.to(device).float()
for m in model.detector.modules():
if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
m.inplace = True # pytorch 1.7.0 compatibility
elif isinstance(m, Conv):
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
return model
# Download from Google Drive
# def init_yolov5face_model(model_name, device='cuda'):
# if model_name == 'YOLOv5l':
# model = YoloDetector(config_name='facelib/detection/yolov5face/models/yolov5l.yaml', device=device)
# f_id = {'yolov5l-face.pth': '131578zMA6B2x8VQHyHfa6GEPtulMCNzV'}
# elif model_name == 'YOLOv5n':
# model = YoloDetector(config_name='facelib/detection/yolov5face/models/yolov5n.yaml', device=device)
# f_id = {'yolov5n-face.pth': '1fhcpFvWZqghpGXjYPIne2sw1Fy4yhw6o'}
# else:
# raise NotImplementedError(f'{model_name} is not implemented.')
# model_path = os.path.join('weights/facelib', list(f_id.keys())[0])
# if not os.path.exists(model_path):
# download_pretrained_models(file_ids=f_id, save_path_root='weights/facelib')
# load_net = torch.load(model_path, map_location=lambda storage, loc: storage)
# model.detector.load_state_dict(load_net, strict=True)
# model.detector.eval()
# model.detector = model.detector.to(device).float()
# for m in model.detector.modules():
# if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
# m.inplace = True # pytorch 1.7.0 compatibility
# elif isinstance(m, Conv):
# m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
# return model |