File size: 5,190 Bytes
06f26d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import torch
import torch.nn as nn
import torch.nn.functional as F

from .resnet import ResNet18


class ConvBNReLU(nn.Module):

    def __init__(self, in_chan, out_chan, ks=3, stride=1, padding=1):
        super(ConvBNReLU, self).__init__()
        self.conv = nn.Conv2d(in_chan, out_chan, kernel_size=ks, stride=stride, padding=padding, bias=False)
        self.bn = nn.BatchNorm2d(out_chan)

    def forward(self, x):
        x = self.conv(x)
        x = F.relu(self.bn(x))
        return x


class BiSeNetOutput(nn.Module):

    def __init__(self, in_chan, mid_chan, num_class):
        super(BiSeNetOutput, self).__init__()
        self.conv = ConvBNReLU(in_chan, mid_chan, ks=3, stride=1, padding=1)
        self.conv_out = nn.Conv2d(mid_chan, num_class, kernel_size=1, bias=False)

    def forward(self, x):
        feat = self.conv(x)
        out = self.conv_out(feat)
        return out, feat


class AttentionRefinementModule(nn.Module):

    def __init__(self, in_chan, out_chan):
        super(AttentionRefinementModule, self).__init__()
        self.conv = ConvBNReLU(in_chan, out_chan, ks=3, stride=1, padding=1)
        self.conv_atten = nn.Conv2d(out_chan, out_chan, kernel_size=1, bias=False)
        self.bn_atten = nn.BatchNorm2d(out_chan)
        self.sigmoid_atten = nn.Sigmoid()

    def forward(self, x):
        feat = self.conv(x)
        atten = F.avg_pool2d(feat, feat.size()[2:])
        atten = self.conv_atten(atten)
        atten = self.bn_atten(atten)
        atten = self.sigmoid_atten(atten)
        out = torch.mul(feat, atten)
        return out


class ContextPath(nn.Module):

    def __init__(self):
        super(ContextPath, self).__init__()
        self.resnet = ResNet18()
        self.arm16 = AttentionRefinementModule(256, 128)
        self.arm32 = AttentionRefinementModule(512, 128)
        self.conv_head32 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1)
        self.conv_head16 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1)
        self.conv_avg = ConvBNReLU(512, 128, ks=1, stride=1, padding=0)

    def forward(self, x):
        feat8, feat16, feat32 = self.resnet(x)
        h8, w8 = feat8.size()[2:]
        h16, w16 = feat16.size()[2:]
        h32, w32 = feat32.size()[2:]

        avg = F.avg_pool2d(feat32, feat32.size()[2:])
        avg = self.conv_avg(avg)
        avg_up = F.interpolate(avg, (h32, w32), mode='nearest')

        feat32_arm = self.arm32(feat32)
        feat32_sum = feat32_arm + avg_up
        feat32_up = F.interpolate(feat32_sum, (h16, w16), mode='nearest')
        feat32_up = self.conv_head32(feat32_up)

        feat16_arm = self.arm16(feat16)
        feat16_sum = feat16_arm + feat32_up
        feat16_up = F.interpolate(feat16_sum, (h8, w8), mode='nearest')
        feat16_up = self.conv_head16(feat16_up)

        return feat8, feat16_up, feat32_up  # x8, x8, x16


class FeatureFusionModule(nn.Module):

    def __init__(self, in_chan, out_chan):
        super(FeatureFusionModule, self).__init__()
        self.convblk = ConvBNReLU(in_chan, out_chan, ks=1, stride=1, padding=0)
        self.conv1 = nn.Conv2d(out_chan, out_chan // 4, kernel_size=1, stride=1, padding=0, bias=False)
        self.conv2 = nn.Conv2d(out_chan // 4, out_chan, kernel_size=1, stride=1, padding=0, bias=False)
        self.relu = nn.ReLU(inplace=True)
        self.sigmoid = nn.Sigmoid()

    def forward(self, fsp, fcp):
        fcat = torch.cat([fsp, fcp], dim=1)
        feat = self.convblk(fcat)
        atten = F.avg_pool2d(feat, feat.size()[2:])
        atten = self.conv1(atten)
        atten = self.relu(atten)
        atten = self.conv2(atten)
        atten = self.sigmoid(atten)
        feat_atten = torch.mul(feat, atten)
        feat_out = feat_atten + feat
        return feat_out


class BiSeNet(nn.Module):

    def __init__(self, num_class):
        super(BiSeNet, self).__init__()
        self.cp = ContextPath()
        self.ffm = FeatureFusionModule(256, 256)
        self.conv_out = BiSeNetOutput(256, 256, num_class)
        self.conv_out16 = BiSeNetOutput(128, 64, num_class)
        self.conv_out32 = BiSeNetOutput(128, 64, num_class)

    def forward(self, x, return_feat=False):
        h, w = x.size()[2:]
        feat_res8, feat_cp8, feat_cp16 = self.cp(x)  # return res3b1 feature
        feat_sp = feat_res8  # replace spatial path feature with res3b1 feature
        feat_fuse = self.ffm(feat_sp, feat_cp8)

        out, feat = self.conv_out(feat_fuse)
        out16, feat16 = self.conv_out16(feat_cp8)
        out32, feat32 = self.conv_out32(feat_cp16)

        out = F.interpolate(out, (h, w), mode='bilinear', align_corners=True)
        out16 = F.interpolate(out16, (h, w), mode='bilinear', align_corners=True)
        out32 = F.interpolate(out32, (h, w), mode='bilinear', align_corners=True)

        if return_feat:
            feat = F.interpolate(feat, (h, w), mode='bilinear', align_corners=True)
            feat16 = F.interpolate(feat16, (h, w), mode='bilinear', align_corners=True)
            feat32 = F.interpolate(feat32, (h, w), mode='bilinear', align_corners=True)
            return out, out16, out32, feat, feat16, feat32
        else:
            return out, out16, out32