Spaces:
Running
on
T4
Running
on
T4
File size: 13,625 Bytes
06f26d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Power by Zongsheng Yue 2022-07-13 16:59:27
import os
import random
import numpy as np
from math import ceil
from pathlib import Path
from einops import rearrange
from omegaconf import OmegaConf
from skimage import img_as_ubyte
from ResizeRight.resize_right import resize
from utils import util_net
from utils import util_image
from utils import util_common
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
from basicsr.utils import img2tensor
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.utils.realesrgan_utils import RealESRGANer
from facelib.utils.face_restoration_helper import FaceRestoreHelper
class BaseSampler:
def __init__(self, configs):
'''
Input:
configs: config, see the yaml file in folder ./configs/sample/
'''
self.configs = configs
self.display = configs.display
self.diffusion_cfg = configs.diffusion
self.setup_dist() # setup distributed training: self.num_gpus, self.rank
self.setup_seed() # setup seed
self.build_model()
def setup_seed(self, seed=None):
seed = self.configs.seed if seed is None else seed
seed += (self.rank+1) * 10000
if self.rank == 0 and self.display:
print(f'Setting random seed {seed}')
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def setup_dist(self):
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.rank = 0
def build_model(self):
obj = util_common.get_obj_from_str(self.configs.diffusion.target)
self.diffusion = obj(**self.configs.diffusion.params)
obj = util_common.get_obj_from_str(self.configs.model.target)
model = obj(**self.configs.model.params).to(self.device)
if not self.configs.model.ckpt_path is None:
self.load_model(model, self.configs.model.ckpt_path)
self.model = model
self.model.eval()
def load_model(self, model, ckpt_path=None):
if not ckpt_path is None:
if self.rank == 0 and self.display:
print(f'Loading from {ckpt_path}...')
ckpt = torch.load(ckpt_path, map_location=f"cuda:{self.rank}")
util_net.reload_model(model, ckpt)
if self.rank == 0 and self.display:
print('Loaded Done')
def reset_diffusion(self, diffusion_cfg):
self.diffusion = create_gaussian_diffusion(**diffusion_cfg)
class DifIRSampler(BaseSampler):
def build_model(self):
super().build_model()
if not self.configs.model_ir is None:
obj = util_common.get_obj_from_str(self.configs.model_ir.target)
model_ir = obj(**self.configs.model_ir.params).cuda()
if not self.configs.model_ir.ckpt_path is None:
self.load_model(model_ir, self.configs.model_ir.ckpt_path)
self.model_ir = model_ir
self.model_ir.eval()
if not self.configs.aligned:
# face dection model
self.face_helper = FaceRestoreHelper(
self.configs.detection.upscale,
face_size=self.configs.im_size,
crop_ratio=(1, 1),
det_model = self.configs.detection.det_model,
save_ext='png',
use_parse=True,
device=self.device,
)
# background super-resolution
if self.configs.background_enhance or self.configs.face_upsample:
bg_model = RRDBNet(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_block=23,
num_grow_ch=32,
scale=2,
)
self.bg_model = RealESRGANer(
scale=2,
model_path='https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth',
model=bg_model,
tile=400,
tile_pad=10,
pre_pad=0,
half=True,
device=torch.device(f'cuda:{self.rank}'),
) # need to set False in CPU mode
def sample_func_ir_aligned(
self,
y0,
start_timesteps=None,
post_fun=None,
model_kwargs_ir=None,
need_restoration=True,
):
'''
Input:
y0: n x c x h x w torch tensor, low-quality image, [0, 1], RGB
or, h x w x c, numpy array, [0, 255], uint8, BGR
start_timesteps: integer, range [0, num_timesteps-1],
for accelerated sampling (e.g., 'ddim250'), range [0, 249]
post_fun: post-processing for the enhanced image
model_kwargs_ir: additional parameters for restoration model
Output:
sample: n x c x h x w, torch tensor, [0,1], RGB
'''
if not isinstance(y0, torch.Tensor):
y0 = img2tensor(y0, bgr2rgb=True, float32=True).unsqueeze(0) / 255. # 1 x c x h x w, [0,1]
if start_timesteps is None:
start_timesteps = self.diffusion.num_timesteps
if post_fun is None:
post_fun = lambda x: util_image.normalize_th(
im=x,
mean=0.5,
std=0.5,
reverse=False,
)
# basical image restoration
device = next(self.model.parameters()).device
y0 = y0.to(device=device, dtype=torch.float32)
if need_restoration:
with torch.no_grad():
if model_kwargs_ir is None:
im_hq = self.model_ir(y0)
else:
im_hq = self.model_ir(y0, **model_kwargs_ir)
else:
im_hq = y0
im_hq.clamp_(0.0, 1.0)
h_old, w_old = im_hq.shape[2:4]
if not (h_old == self.configs.im_size and w_old == self.configs.im_size):
im_hq = resize(im_hq, out_shape=(self.configs.im_size,) * 2).to(torch.float32)
# diffuse for im_hq
yt = self.diffusion.q_sample(
x_start=post_fun(im_hq),
t=torch.tensor([start_timesteps,]*im_hq.shape[0], device=device),
)
assert yt.shape[-1] == self.configs.im_size and yt.shape[-2] == self.configs.im_size
if 'ddim' in self.configs.diffusion.params.timestep_respacing:
sample = self.diffusion.ddim_sample_loop(
self.model,
shape=yt.shape,
noise=yt,
start_timesteps=start_timesteps,
clip_denoised=True,
denoised_fn=None,
model_kwargs=None,
device=None,
progress=False,
eta=0.0,
)
else:
sample = self.diffusion.p_sample_loop(
self.model,
shape=yt.shape,
noise=yt,
start_timesteps=start_timesteps,
clip_denoised=True,
denoised_fn=None,
model_kwargs=None,
device=None,
progress=False,
)
sample = util_image.normalize_th(sample, reverse=True).clamp(0.0, 1.0)
if not (h_old == self.configs.im_size and w_old == self.configs.im_size):
sample = resize(sample, out_shape=(h_old, w_old)).clamp(0.0, 1.0)
return sample, im_hq
def sample_func_bfr_unaligned(
self,
y0,
bs=16,
start_timesteps=None,
post_fun=None,
model_kwargs_ir=None,
need_restoration=True,
only_center_face=False,
draw_box=False,
):
'''
Input:
y0: h x w x c numpy array, uint8, BGR
bs: batch size for face restoration
upscale: upsampling factor for the restorated image
start_timesteps: integer, range [0, num_timesteps-1],
for accelerated sampling (e.g., 'ddim250'), range [0, 249]
post_fun: post-processing for the enhanced image
model_kwargs_ir: additional parameters for restoration model
only_center_face:
draw_box: draw a box for each face
Output:
restored_img: h x w x c, numpy array, uint8, BGR
restored_faces: list, h x w x c, numpy array, uint8, BGR
cropped_faces: list, h x w x c, numpy array, uint8, BGR
'''
def _process_batch(cropped_faces_list):
length = len(cropped_faces_list)
cropped_face_t = np.stack(
img2tensor(cropped_faces_list, bgr2rgb=True, float32=True),
axis=0) / 255.
cropped_face_t = torch.from_numpy(cropped_face_t).to(torch.device(f"cuda:{self.rank}"))
restored_faces = self.sample_func_ir_aligned(
cropped_face_t,
start_timesteps=start_timesteps,
post_fun=post_fun,
model_kwargs_ir=model_kwargs_ir,
need_restoration=need_restoration,
)[0] # [0, 1], b x c x h x w
return restored_faces
assert not self.configs.aligned
self.face_helper.clean_all()
self.face_helper.read_image(y0)
num_det_faces = self.face_helper.get_face_landmarks_5(
only_center_face=only_center_face,
resize=640,
eye_dist_threshold=5,
)
# align and warp each face
self.face_helper.align_warp_face()
num_cropped_face = len(self.face_helper.cropped_faces)
if num_cropped_face > bs:
restored_faces = []
for idx_start in range(0, num_cropped_face, bs):
idx_end = idx_start + bs if idx_start + bs < num_cropped_face else num_cropped_face
current_cropped_faces = self.face_helper.cropped_faces[idx_start:idx_end]
current_restored_faces = _process_batch(current_cropped_faces)
current_restored_faces = util_image.tensor2img(
list(current_restored_faces.split(1, dim=0)),
rgb2bgr=True,
min_max=(0, 1),
out_type=np.uint8,
)
restored_faces.extend(current_restored_faces)
else:
restored_faces = _process_batch(self.face_helper.cropped_faces)
restored_faces = util_image.tensor2img(
list(restored_faces.split(1, dim=0)),
rgb2bgr=True,
min_max=(0, 1),
out_type=np.uint8,
)
for xx in restored_faces:
self.face_helper.add_restored_face(xx)
# paste_back
if self.configs.background_enhance:
bg_img = self.bg_model.enhance(y0, outscale=self.configs.detection.upscale)[0]
else:
bg_img = None
self.face_helper.get_inverse_affine(None)
# paste each restored face to the input image
if self.configs.face_upsample:
restored_img = self.face_helper.paste_faces_to_input_image(
upsample_img=bg_img,
draw_box=draw_box,
face_upsampler=self.bg_model,
)
else:
restored_img = self.face_helper.paste_faces_to_input_image(
upsample_img=bg_img,
draw_box=draw_box,
)
cropped_faces = self.face_helper.cropped_faces
return restored_img, restored_faces, cropped_faces
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--save_dir",
type=str,
default="./save_dir",
help="Folder to save the checkpoints and training log",
)
parser.add_argument(
"--gpu_id",
type=str,
default='',
help="GPU Index, e.g., 025",
)
parser.add_argument(
"--cfg_path",
type=str,
default='./configs/sample/iddpm_ffhq256.yaml',
help="Path of config files",
)
parser.add_argument(
"--bs",
type=int,
default=32,
help="Batch size",
)
parser.add_argument(
"--num_images",
type=int,
default=3000,
help="Number of sampled images",
)
parser.add_argument(
"--timestep_respacing",
type=str,
default='1000',
help="Sampling steps for accelerate",
)
args = parser.parse_args()
configs = OmegaConf.load(args.cfg_path)
configs.gpu_id = args.gpu_id
configs.diffusion.params.timestep_respacing = args.timestep_respacing
sampler_dist = DiffusionSampler(configs)
sampler_dist.sample_func(
bs=args.bs,
num_images=args.num_images,
save_dir=args.save_dir,
)
|