Spaces:
Sleeping
Sleeping
File size: 5,957 Bytes
06f26d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import random
import numpy as np
from pathlib import Path
from ResizeRight.resize_right import resize
from einops import rearrange
import torch
import torchvision as thv
from torch.utils.data import Dataset
from utils import util_sisr
from utils import util_image
from utils import util_common
from basicsr.data.realesrgan_dataset import RealESRGANDataset
from .ffhq_degradation_dataset import FFHQDegradationDataset
def get_transforms(transform_type, out_size, sf):
if transform_type == 'default':
transform = thv.transforms.Compose([
util_image.SpatialAug(),
thv.transforms.ToTensor(),
thv.transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
])
elif transform_type == 'face':
transform = thv.transforms.Compose([
thv.transforms.ToTensor(),
thv.transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
])
elif transform_type == 'bicubic':
transform = thv.transforms.Compose([
util_sisr.Bicubic(1/sf),
thv.transforms.ToTensor(),
thv.transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
])
else:
raise ValueError(f'Unexpected transform_variant {transform_variant}')
return transform
def create_dataset(dataset_config):
if dataset_config['type'] == 'gfpgan':
dataset = FFHQDegradationDataset(dataset_config['params'])
elif dataset_config['type'] == 'face':
dataset = BaseDatasetFace(**dataset_config['params'])
elif dataset_config['type'] == 'bicubic':
dataset = DatasetBicubic(**dataset_config['params'])
elif dataset_config['type'] == 'folder':
dataset = BaseDataFolder(**dataset_config['params'])
elif dataset_config['type'] == 'realesrgan':
dataset = RealESRGANDataset(dataset_config['params'])
else:
raise NotImplementedError(dataset_config['type'])
return dataset
class BaseDatasetFace(Dataset):
def __init__(self, celeba_txt=None,
ffhq_txt=None,
out_size=256,
transform_type='face',
sf=None,
length=None):
super().__init__()
self.files_names = util_common.readline_txt(celeba_txt) + util_common.readline_txt(ffhq_txt)
if length is None:
self.length = len(self.files_names)
else:
self.length = length
self.transform = get_transforms(transform_type, out_size, sf)
def __len__(self):
return self.length
def __getitem__(self, index):
im_path = self.files_names[index]
im = util_image.imread(im_path, chn='rgb', dtype='uint8')
im = self.transform(im)
return {'image':im,}
class DatasetBicubic(Dataset):
def __init__(self,
files_txt=None,
val_dir=None,
ext='png',
sf=None,
up_back=False,
need_gt_path=False,
length=None):
super().__init__()
if val_dir is None:
self.files_names = util_common.readline_txt(files_txt)
else:
self.files_names = [str(x) for x in Path(val_dir).glob(f"*.{ext}")]
self.sf = sf
self.up_back = up_back
self.need_gt_path = need_gt_path
if length is None:
self.length = len(self.files_names)
else:
self.length = length
def __len__(self):
return self.length
def __getitem__(self, index):
im_path = self.files_names[index]
im_gt = util_image.imread(im_path, chn='rgb', dtype='float32')
im_lq = resize(im_gt, scale_factors=1/self.sf)
if self.up_back:
im_lq = resize(im_lq, scale_factors=self.sf)
im_lq = rearrange(im_lq, 'h w c -> c h w')
im_lq = torch.from_numpy(im_lq).type(torch.float32)
im_gt = rearrange(im_gt, 'h w c -> c h w')
im_gt = torch.from_numpy(im_gt).type(torch.float32)
if self.need_gt_path:
return {'lq':im_lq, 'gt':im_gt, 'gt_path':im_path}
else:
return {'lq':im_lq, 'gt':im_gt}
class BaseDataFolder(Dataset):
def __init__(
self,
dir_path,
dir_path_gt,
need_gt_path=True,
length=None,
ext=['png', 'jpg', 'jpeg', 'JPEG', 'bmp'],
mean=0.5,
std=0.5,
):
super(BaseDataFolder, self).__init__()
if isinstance(ext, str):
files_path = [str(x) for x in Path(dir_path).glob(f'*.{ext}')]
else:
assert isinstance(ext, list) or isinstance(ext, tuple)
files_path = []
for current_ext in ext:
files_path.extend([str(x) for x in Path(dir_path).glob(f'*.{current_ext}')])
self.files_path = files_path if length is None else files_path[:length]
self.dir_path_gt = dir_path_gt
self.need_gt_path = need_gt_path
self.mean=mean
self.std=std
def __len__(self):
return len(self.files_path)
def __getitem__(self, index):
im_path = self.files_path[index]
im = util_image.imread(im_path, chn='rgb', dtype='float32')
im = util_image.normalize_np(im, mean=self.mean, std=self.std, reverse=False)
im = rearrange(im, 'h w c -> c h w')
out_dict = {'image':im.astype(np.float32), 'lq':im.astype(np.float32)}
if self.need_gt_path:
out_dict['path'] = im_path
if self.dir_path_gt is not None:
gt_path = str(Path(self.dir_path_gt) / Path(im_path).name)
im_gt = util_image.imread(gt_path, chn='rgb', dtype='float32')
im_gt = util_image.normalize_np(im_gt, mean=self.mean, std=self.std, reverse=False)
im_gt = rearrange(im_gt, 'h w c -> c h w')
out_dict['gt'] = im_gt.astype(np.float32)
return out_dict
|