File size: 6,225 Bytes
06f26d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import cv2
import random
import torch


def mod_crop(img, scale):
    """Mod crop images, used during testing.

    Args:
        img (ndarray): Input image.
        scale (int): Scale factor.

    Returns:
        ndarray: Result image.
    """
    img = img.copy()
    if img.ndim in (2, 3):
        h, w = img.shape[0], img.shape[1]
        h_remainder, w_remainder = h % scale, w % scale
        img = img[:h - h_remainder, :w - w_remainder, ...]
    else:
        raise ValueError(f'Wrong img ndim: {img.ndim}.')
    return img


def paired_random_crop(img_gts, img_lqs, gt_patch_size, scale, gt_path=None):
    """Paired random crop. Support Numpy array and Tensor inputs.

    It crops lists of lq and gt images with corresponding locations.

    Args:
        img_gts (list[ndarray] | ndarray | list[Tensor] | Tensor): GT images. Note that all images
            should have the same shape. If the input is an ndarray, it will
            be transformed to a list containing itself.
        img_lqs (list[ndarray] | ndarray): LQ images. Note that all images
            should have the same shape. If the input is an ndarray, it will
            be transformed to a list containing itself.
        gt_patch_size (int): GT patch size.
        scale (int): Scale factor.
        gt_path (str): Path to ground-truth. Default: None.

    Returns:
        list[ndarray] | ndarray: GT images and LQ images. If returned results
            only have one element, just return ndarray.
    """

    if not isinstance(img_gts, list):
        img_gts = [img_gts]
    if not isinstance(img_lqs, list):
        img_lqs = [img_lqs]

    # determine input type: Numpy array or Tensor
    input_type = 'Tensor' if torch.is_tensor(img_gts[0]) else 'Numpy'

    if input_type == 'Tensor':
        h_lq, w_lq = img_lqs[0].size()[-2:]
        h_gt, w_gt = img_gts[0].size()[-2:]
    else:
        h_lq, w_lq = img_lqs[0].shape[0:2]
        h_gt, w_gt = img_gts[0].shape[0:2]
    lq_patch_size = gt_patch_size // scale

    if h_gt != h_lq * scale or w_gt != w_lq * scale:
        raise ValueError(f'Scale mismatches. GT ({h_gt}, {w_gt}) is not {scale}x ',
                         f'multiplication of LQ ({h_lq}, {w_lq}).')
    if h_lq < lq_patch_size or w_lq < lq_patch_size:
        raise ValueError(f'LQ ({h_lq}, {w_lq}) is smaller than patch size '
                         f'({lq_patch_size}, {lq_patch_size}). '
                         f'Please remove {gt_path}.')

    # randomly choose top and left coordinates for lq patch
    top = random.randint(0, h_lq - lq_patch_size)
    left = random.randint(0, w_lq - lq_patch_size)

    # crop lq patch
    if input_type == 'Tensor':
        img_lqs = [v[:, :, top:top + lq_patch_size, left:left + lq_patch_size] for v in img_lqs]
    else:
        img_lqs = [v[top:top + lq_patch_size, left:left + lq_patch_size, ...] for v in img_lqs]

    # crop corresponding gt patch
    top_gt, left_gt = int(top * scale), int(left * scale)
    if input_type == 'Tensor':
        img_gts = [v[:, :, top_gt:top_gt + gt_patch_size, left_gt:left_gt + gt_patch_size] for v in img_gts]
    else:
        img_gts = [v[top_gt:top_gt + gt_patch_size, left_gt:left_gt + gt_patch_size, ...] for v in img_gts]
    if len(img_gts) == 1:
        img_gts = img_gts[0]
    if len(img_lqs) == 1:
        img_lqs = img_lqs[0]
    return img_gts, img_lqs


def augment(imgs, hflip=True, rotation=True, flows=None, return_status=False):
    """Augment: horizontal flips OR rotate (0, 90, 180, 270 degrees).

    We use vertical flip and transpose for rotation implementation.
    All the images in the list use the same augmentation.

    Args:
        imgs (list[ndarray] | ndarray): Images to be augmented. If the input
            is an ndarray, it will be transformed to a list.
        hflip (bool): Horizontal flip. Default: True.
        rotation (bool): Ratotation. Default: True.
        flows (list[ndarray]: Flows to be augmented. If the input is an
            ndarray, it will be transformed to a list.
            Dimension is (h, w, 2). Default: None.
        return_status (bool): Return the status of flip and rotation.
            Default: False.

    Returns:
        list[ndarray] | ndarray: Augmented images and flows. If returned
            results only have one element, just return ndarray.

    """
    hflip = hflip and random.random() < 0.5
    vflip = rotation and random.random() < 0.5
    rot90 = rotation and random.random() < 0.5

    def _augment(img):
        if hflip:  # horizontal
            cv2.flip(img, 1, img)
        if vflip:  # vertical
            cv2.flip(img, 0, img)
        if rot90:
            img = img.transpose(1, 0, 2)
        return img

    def _augment_flow(flow):
        if hflip:  # horizontal
            cv2.flip(flow, 1, flow)
            flow[:, :, 0] *= -1
        if vflip:  # vertical
            cv2.flip(flow, 0, flow)
            flow[:, :, 1] *= -1
        if rot90:
            flow = flow.transpose(1, 0, 2)
            flow = flow[:, :, [1, 0]]
        return flow

    if not isinstance(imgs, list):
        imgs = [imgs]
    imgs = [_augment(img) for img in imgs]
    if len(imgs) == 1:
        imgs = imgs[0]

    if flows is not None:
        if not isinstance(flows, list):
            flows = [flows]
        flows = [_augment_flow(flow) for flow in flows]
        if len(flows) == 1:
            flows = flows[0]
        return imgs, flows
    else:
        if return_status:
            return imgs, (hflip, vflip, rot90)
        else:
            return imgs


def img_rotate(img, angle, center=None, scale=1.0):
    """Rotate image.

    Args:
        img (ndarray): Image to be rotated.
        angle (float): Rotation angle in degrees. Positive values mean
            counter-clockwise rotation.
        center (tuple[int]): Rotation center. If the center is None,
            initialize it as the center of the image. Default: None.
        scale (float): Isotropic scale factor. Default: 1.0.
    """
    (h, w) = img.shape[:2]

    if center is None:
        center = (w // 2, h // 2)

    matrix = cv2.getRotationMatrix2D(center, angle, scale)
    rotated_img = cv2.warpAffine(img, matrix, (w, h))
    return rotated_img