File size: 6,281 Bytes
06f26d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import torch
import torch.nn as nn
import torch.nn.functional as F


def conv_bn(inp, oup, stride=1, leaky=0):
    return nn.Sequential(
        nn.Conv2d(inp, oup, 3, stride, 1, bias=False), nn.BatchNorm2d(oup),
        nn.LeakyReLU(negative_slope=leaky, inplace=True))


def conv_bn_no_relu(inp, oup, stride):
    return nn.Sequential(
        nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
        nn.BatchNorm2d(oup),
    )


def conv_bn1X1(inp, oup, stride, leaky=0):
    return nn.Sequential(
        nn.Conv2d(inp, oup, 1, stride, padding=0, bias=False), nn.BatchNorm2d(oup),
        nn.LeakyReLU(negative_slope=leaky, inplace=True))


def conv_dw(inp, oup, stride, leaky=0.1):
    return nn.Sequential(
        nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False),
        nn.BatchNorm2d(inp),
        nn.LeakyReLU(negative_slope=leaky, inplace=True),
        nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
        nn.BatchNorm2d(oup),
        nn.LeakyReLU(negative_slope=leaky, inplace=True),
    )


class SSH(nn.Module):

    def __init__(self, in_channel, out_channel):
        super(SSH, self).__init__()
        assert out_channel % 4 == 0
        leaky = 0
        if (out_channel <= 64):
            leaky = 0.1
        self.conv3X3 = conv_bn_no_relu(in_channel, out_channel // 2, stride=1)

        self.conv5X5_1 = conv_bn(in_channel, out_channel // 4, stride=1, leaky=leaky)
        self.conv5X5_2 = conv_bn_no_relu(out_channel // 4, out_channel // 4, stride=1)

        self.conv7X7_2 = conv_bn(out_channel // 4, out_channel // 4, stride=1, leaky=leaky)
        self.conv7x7_3 = conv_bn_no_relu(out_channel // 4, out_channel // 4, stride=1)

    def forward(self, input):
        conv3X3 = self.conv3X3(input)

        conv5X5_1 = self.conv5X5_1(input)
        conv5X5 = self.conv5X5_2(conv5X5_1)

        conv7X7_2 = self.conv7X7_2(conv5X5_1)
        conv7X7 = self.conv7x7_3(conv7X7_2)

        out = torch.cat([conv3X3, conv5X5, conv7X7], dim=1)
        out = F.relu(out)
        return out


class FPN(nn.Module):

    def __init__(self, in_channels_list, out_channels):
        super(FPN, self).__init__()
        leaky = 0
        if (out_channels <= 64):
            leaky = 0.1
        self.output1 = conv_bn1X1(in_channels_list[0], out_channels, stride=1, leaky=leaky)
        self.output2 = conv_bn1X1(in_channels_list[1], out_channels, stride=1, leaky=leaky)
        self.output3 = conv_bn1X1(in_channels_list[2], out_channels, stride=1, leaky=leaky)

        self.merge1 = conv_bn(out_channels, out_channels, leaky=leaky)
        self.merge2 = conv_bn(out_channels, out_channels, leaky=leaky)

    def forward(self, input):
        # names = list(input.keys())
        # input = list(input.values())

        output1 = self.output1(input[0])
        output2 = self.output2(input[1])
        output3 = self.output3(input[2])

        up3 = F.interpolate(output3, size=[output2.size(2), output2.size(3)], mode='nearest')
        output2 = output2 + up3
        output2 = self.merge2(output2)

        up2 = F.interpolate(output2, size=[output1.size(2), output1.size(3)], mode='nearest')
        output1 = output1 + up2
        output1 = self.merge1(output1)

        out = [output1, output2, output3]
        return out


class MobileNetV1(nn.Module):

    def __init__(self):
        super(MobileNetV1, self).__init__()
        self.stage1 = nn.Sequential(
            conv_bn(3, 8, 2, leaky=0.1),  # 3
            conv_dw(8, 16, 1),  # 7
            conv_dw(16, 32, 2),  # 11
            conv_dw(32, 32, 1),  # 19
            conv_dw(32, 64, 2),  # 27
            conv_dw(64, 64, 1),  # 43
        )
        self.stage2 = nn.Sequential(
            conv_dw(64, 128, 2),  # 43 + 16 = 59
            conv_dw(128, 128, 1),  # 59 + 32 = 91
            conv_dw(128, 128, 1),  # 91 + 32 = 123
            conv_dw(128, 128, 1),  # 123 + 32 = 155
            conv_dw(128, 128, 1),  # 155 + 32 = 187
            conv_dw(128, 128, 1),  # 187 + 32 = 219
        )
        self.stage3 = nn.Sequential(
            conv_dw(128, 256, 2),  # 219 +3 2 = 241
            conv_dw(256, 256, 1),  # 241 + 64 = 301
        )
        self.avg = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(256, 1000)

    def forward(self, x):
        x = self.stage1(x)
        x = self.stage2(x)
        x = self.stage3(x)
        x = self.avg(x)
        # x = self.model(x)
        x = x.view(-1, 256)
        x = self.fc(x)
        return x


class ClassHead(nn.Module):

    def __init__(self, inchannels=512, num_anchors=3):
        super(ClassHead, self).__init__()
        self.num_anchors = num_anchors
        self.conv1x1 = nn.Conv2d(inchannels, self.num_anchors * 2, kernel_size=(1, 1), stride=1, padding=0)

    def forward(self, x):
        out = self.conv1x1(x)
        out = out.permute(0, 2, 3, 1).contiguous()

        return out.view(out.shape[0], -1, 2)


class BboxHead(nn.Module):

    def __init__(self, inchannels=512, num_anchors=3):
        super(BboxHead, self).__init__()
        self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 4, kernel_size=(1, 1), stride=1, padding=0)

    def forward(self, x):
        out = self.conv1x1(x)
        out = out.permute(0, 2, 3, 1).contiguous()

        return out.view(out.shape[0], -1, 4)


class LandmarkHead(nn.Module):

    def __init__(self, inchannels=512, num_anchors=3):
        super(LandmarkHead, self).__init__()
        self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 10, kernel_size=(1, 1), stride=1, padding=0)

    def forward(self, x):
        out = self.conv1x1(x)
        out = out.permute(0, 2, 3, 1).contiguous()

        return out.view(out.shape[0], -1, 10)


def make_class_head(fpn_num=3, inchannels=64, anchor_num=2):
    classhead = nn.ModuleList()
    for i in range(fpn_num):
        classhead.append(ClassHead(inchannels, anchor_num))
    return classhead


def make_bbox_head(fpn_num=3, inchannels=64, anchor_num=2):
    bboxhead = nn.ModuleList()
    for i in range(fpn_num):
        bboxhead.append(BboxHead(inchannels, anchor_num))
    return bboxhead


def make_landmark_head(fpn_num=3, inchannels=64, anchor_num=2):
    landmarkhead = nn.ModuleList()
    for i in range(fpn_num):
        landmarkhead.append(LandmarkHead(inchannels, anchor_num))
    return landmarkhead