Spaces:
Sleeping
Sleeping
File size: 38,134 Bytes
06f26d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 |
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Power by Zongsheng Yue 2022-05-18 13:04:06
import os
import sys
import math
import time
import lpips
import random
import datetime
import functools
import numpy as np
from pathlib import Path
from loguru import logger
from copy import deepcopy
from omegaconf import OmegaConf
from collections import OrderedDict
from einops import rearrange
from datapipe.datasets import create_dataset
from models.resample import UniformSampler
import torch
import torch.nn as nn
import torch.cuda.amp as amp
import torch.nn.functional as F
import torch.utils.data as udata
import torch.distributed as dist
import torch.multiprocessing as mp
import torchvision.utils as vutils
from torch.utils.tensorboard import SummaryWriter
from torch.nn.parallel import DistributedDataParallel as DDP
from utils import util_net
from utils import util_common
from utils import util_image
from basicsr.utils import DiffJPEG
from basicsr.utils.img_process_util import filter2D
from basicsr.data.transforms import paired_random_crop
from basicsr.data.degradations import random_add_gaussian_noise_pt, random_add_poisson_noise_pt
class TrainerBase:
def __init__(self, configs):
self.configs = configs
# setup distributed training: self.num_gpus, self.rank
self.setup_dist()
# setup seed
self.setup_seed()
# setup logger: self.logger
self.init_logger()
# logging the configurations
if self.rank == 0: self.logger.info(OmegaConf.to_yaml(self.configs))
# build model: self.model, self.loss
self.build_model()
# setup optimization: self.optimzer, self.sheduler
self.setup_optimizaton()
# resume
self.resume_from_ckpt()
def setup_dist(self):
if self.configs.gpu_id:
gpu_id = self.configs.gpu_id
num_gpus = len(gpu_id)
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = ','.join([gpu_id[ii] for ii in range(num_gpus)])
else:
num_gpus = torch.cuda.device_count()
if num_gpus > 1:
if mp.get_start_method(allow_none=True) is None:
mp.set_start_method('spawn')
rank = int(os.environ['LOCAL_RANK'])
torch.cuda.set_device(rank % num_gpus)
dist.init_process_group(
backend='nccl',
init_method='env://',
)
self.num_gpus = num_gpus
self.rank = int(os.environ['LOCAL_RANK']) if num_gpus > 1 else 0
def setup_seed(self, seed=None):
seed = self.configs.seed if seed is None else seed
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def init_logger(self):
# only should be run on rank: 0
save_dir = Path(self.configs.save_dir)
logtxet_path = save_dir / 'training.log'
log_dir = save_dir / 'logs'
ckpt_dir = save_dir / 'ckpts'
self.ckpt_dir = ckpt_dir
if self.rank == 0:
if not save_dir.exists():
save_dir.mkdir()
else:
assert self.configs.resume, '''Please check the resume parameter. If you do not
want to resume from some checkpoint, please delete
the saving folder first.'''
# text logging
if logtxet_path.exists():
assert self.configs.resume
self.logger = logger
self.logger.remove()
self.logger.add(logtxet_path, format="{message}", mode='a')
self.logger.add(sys.stderr, format="{message}")
# tensorboard log
if not log_dir.exists():
log_dir.mkdir()
self.writer = SummaryWriter(str(log_dir))
self.log_step = {phase: 1 for phase in ['train', 'val']}
self.log_step_img = {phase: 1 for phase in ['train', 'val']}
if not ckpt_dir.exists():
ckpt_dir.mkdir()
def close_logger(self):
if self.rank == 0: self.writer.close()
def resume_from_ckpt(self):
if self.configs.resume:
if type(self.configs.resume) == bool:
ckpt_index = max([int(x.stem.split('_')[1]) for x in Path(self.ckpt_dir).glob('*.pth')])
ckpt_path = str(Path(self.ckpt_dir) / f"model_{ckpt_index}.pth")
else:
ckpt_path = self.configs.resume
assert os.path.isfile(ckpt_path)
if self.rank == 0:
self.logger.info(f"=> Loaded checkpoint {ckpt_path}")
ckpt = torch.load(ckpt_path, map_location=f"cuda:{self.rank}")
util_net.reload_model(self.model, ckpt['state_dict'])
torch.cuda.empty_cache()
# iterations
self.iters_start = ckpt['iters_start']
# learning rate scheduler
for ii in range(self.iters_start): self.adjust_lr(ii)
if self.rank == 0:
self.log_step = ckpt['log_step']
self.log_step_img = ckpt['log_step_img']
# reset the seed
self.setup_seed(self.iters_start)
else:
self.iters_start = 0
def setup_optimizaton(self):
self.optimizer = torch.optim.AdamW(self.model.parameters(),
lr=self.configs.train.lr,
weight_decay=self.configs.train.weight_decay)
def build_model(self):
params = self.configs.model.get('params', dict)
model = util_common.get_obj_from_str(self.configs.model.target)(**params)
if self.num_gpus > 1:
self.model = DDP(model.cuda(), device_ids=[self.rank,]) # wrap the network
else:
self.model = model.cuda()
# LPIPS metric
if self.rank == 0:
self.lpips_loss = lpips.LPIPS(net='vgg').cuda()
# model information
self.print_model_info()
def build_dataloader(self):
def _wrap_loader(loader):
while True: yield from loader
datasets = {}
for phase in ['train', ]:
dataset_config = self.configs.data.get(phase, dict)
datasets[phase] = create_dataset(dataset_config)
dataloaders = {}
# train dataloader
if self.rank == 0:
for phase in ['train',]:
length = len(datasets[phase])
self.logger.info('Number of images in {:s} data set: {:d}'.format(phase, length))
if self.num_gpus > 1:
shuffle = False
sampler = udata.distributed.DistributedSampler(datasets['train'],
num_replicas=self.num_gpus,
rank=self.rank)
else:
shuffle = True
sampler = None
dataloaders['train'] = _wrap_loader(udata.DataLoader(
datasets['train'],
batch_size=self.configs.train.batch[0] // self.num_gpus,
shuffle=shuffle,
drop_last=False,
num_workers=self.configs.train.num_workers // self.num_gpus,
pin_memory=True,
prefetch_factor=self.configs.train.prefetch_factor,
worker_init_fn=my_worker_init_fn,
sampler=sampler))
self.datasets = datasets
self.dataloaders = dataloaders
self.sampler = sampler
def print_model_info(self):
if self.rank == 0:
num_params = util_net.calculate_parameters(self.model) / 1000**2
self.logger.info("Detailed network architecture:")
self.logger.info(self.model.__repr__())
self.logger.info(f"Number of parameters: {num_params:.2f}M")
def prepare_data(self, phase='train'):
pass
def validation(self):
pass
def train(self):
self.build_dataloader() # prepare data: self.dataloaders, self.datasets, self.sampler
self.model.train()
num_iters_epoch = math.ceil(len(self.datasets['train']) / self.configs.train.batch[0])
for ii in range(self.iters_start, self.configs.train.iterations):
self.current_iters = ii + 1
# prepare data
data = self.prepare_data(
next(self.dataloaders['train']),
self.configs.data.train.type.lower() == 'realesrgan',
)
# training phase
self.training_step(data)
# validation phase
if (ii+1) % self.configs.train.val_freq == 0 and 'val' in self.dataloaders:
if self.rank==0:
self.validation()
#update learning rate
self.adjust_lr()
# save checkpoint
if (ii+1) % self.configs.train.save_freq == 0 and self.rank == 0:
self.save_ckpt()
if (ii+1) % num_iters_epoch == 0 and not self.sampler is None:
self.sampler.set_epoch(ii+1)
# close the tensorboard
if self.rank == 0:
self.close_logger()
def training_step(self, data):
pass
def adjust_lr(self):
if hasattr(self, 'lr_sheduler'):
self.lr_sheduler.step()
def save_ckpt(self):
ckpt_path = self.ckpt_dir / 'model_{:d}.pth'.format(self.current_iters)
torch.save({'iters_start': self.current_iters,
'log_step': {phase:self.log_step[phase] for phase in ['train', 'val']},
'log_step_img': {phase:self.log_step_img[phase] for phase in ['train', 'val']},
'state_dict': self.model.state_dict()}, ckpt_path)
class TrainerSR(TrainerBase):
def __init__(self, configs):
super().__init__(configs)
def mse_loss(self, pred, target):
return F.mse_loss(pred, target, reduction='mean')
@torch.no_grad()
def _dequeue_and_enqueue(self):
"""It is the training pair pool for increasing the diversity in a batch.
Batch processing limits the diversity of synthetic degradations in a batch. For example, samples in a
batch could not have different resize scaling factors. Therefore, we employ this training pair pool
to increase the degradation diversity in a batch.
"""
# initialize
b, c, h, w = self.lq.size()
if not hasattr(self, 'queue_size'):
self.queue_size = self.configs.data.train.params.get('queue_size', b*50)
if not hasattr(self, 'queue_lr'):
assert self.queue_size % b == 0, f'queue size {self.queue_size} should be divisible by batch size {b}'
self.queue_lr = torch.zeros(self.queue_size, c, h, w).cuda()
_, c, h, w = self.gt.size()
self.queue_gt = torch.zeros(self.queue_size, c, h, w).cuda()
self.queue_ptr = 0
if self.queue_ptr == self.queue_size: # the pool is full
# do dequeue and enqueue
# shuffle
idx = torch.randperm(self.queue_size)
self.queue_lr = self.queue_lr[idx]
self.queue_gt = self.queue_gt[idx]
# get first b samples
lq_dequeue = self.queue_lr[0:b, :, :, :].clone()
gt_dequeue = self.queue_gt[0:b, :, :, :].clone()
# update the queue
self.queue_lr[0:b, :, :, :] = self.lq.clone()
self.queue_gt[0:b, :, :, :] = self.gt.clone()
self.lq = lq_dequeue
self.gt = gt_dequeue
else:
# only do enqueue
self.queue_lr[self.queue_ptr:self.queue_ptr + b, :, :, :] = self.lq.clone()
self.queue_gt[self.queue_ptr:self.queue_ptr + b, :, :, :] = self.gt.clone()
self.queue_ptr = self.queue_ptr + b
@torch.no_grad()
def prepare_data(self, data, real_esrgan=True):
if real_esrgan:
if not hasattr(self, 'jpeger'):
self.jpeger = DiffJPEG(differentiable=False).cuda() # simulate JPEG compression artifacts
im_gt = data['gt'].cuda()
kernel1 = data['kernel1'].cuda()
kernel2 = data['kernel2'].cuda()
sinc_kernel = data['sinc_kernel'].cuda()
ori_h, ori_w = im_gt.size()[2:4]
# ----------------------- The first degradation process ----------------------- #
# blur
out = filter2D(im_gt, kernel1)
# random resize
updown_type = random.choices(
['up', 'down', 'keep'],
self.configs.degradation['resize_prob'],
)[0]
if updown_type == 'up':
scale = random.uniform(1, self.configs.degradation['resize_range'][1])
elif updown_type == 'down':
scale = random.uniform(self.configs.degradation['resize_range'][0], 1)
else:
scale = 1
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(out, scale_factor=scale, mode=mode)
# add noise
gray_noise_prob = self.configs.degradation['gray_noise_prob']
if random.random() < self.configs.degradation['gaussian_noise_prob']:
out = random_add_gaussian_noise_pt(
out,
sigma_range=self.configs.degradation['noise_range'],
clip=True,
rounds=False,
gray_prob=gray_noise_prob,
)
else:
out = random_add_poisson_noise_pt(
out,
scale_range=self.configs.degradation['poisson_scale_range'],
gray_prob=gray_noise_prob,
clip=True,
rounds=False)
# JPEG compression
jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.configs.degradation['jpeg_range'])
out = torch.clamp(out, 0, 1) # clamp to [0, 1], otherwise JPEGer will result in unpleasant artifacts
out = self.jpeger(out, quality=jpeg_p)
# ----------------------- The second degradation process ----------------------- #
# blur
if random.random() < self.configs.degradation['second_blur_prob']:
out = filter2D(out, kernel2)
# random resize
updown_type = random.choices(
['up', 'down', 'keep'],
self.configs.degradation['resize_prob2'],
)[0]
if updown_type == 'up':
scale = random.uniform(1, self.configs.degradation['resize_range2'][1])
elif updown_type == 'down':
scale = random.uniform(self.configs.degradation['resize_range2'][0], 1)
else:
scale = 1
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(
out,
size=(int(ori_h / self.configs.model.params.sf * scale),
int(ori_w / self.configs.model.params.sf * scale)),
mode=mode,
)
# add noise
gray_noise_prob = self.configs.degradation['gray_noise_prob2']
if random.random() < self.configs.degradation['gaussian_noise_prob2']:
out = random_add_gaussian_noise_pt(
out,
sigma_range=self.configs.degradation['noise_range2'],
clip=True,
rounds=False,
gray_prob=gray_noise_prob,
)
else:
out = random_add_poisson_noise_pt(
out,
scale_range=self.configs.degradation['poisson_scale_range2'],
gray_prob=gray_noise_prob,
clip=True,
rounds=False,
)
# JPEG compression + the final sinc filter
# We also need to resize images to desired sizes. We group [resize back + sinc filter] together
# as one operation.
# We consider two orders:
# 1. [resize back + sinc filter] + JPEG compression
# 2. JPEG compression + [resize back + sinc filter]
# Empirically, we find other combinations (sinc + JPEG + Resize) will introduce twisted lines.
if random.random() < 0.5:
# resize back + the final sinc filter
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(
out,
size=(ori_h // self.configs.model.params.sf,
ori_w // self.configs.model.params.sf),
mode=mode,
)
out = filter2D(out, sinc_kernel)
# JPEG compression
jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.configs.degradation['jpeg_range2'])
out = torch.clamp(out, 0, 1)
out = self.jpeger(out, quality=jpeg_p)
else:
# JPEG compression
jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.configs.degradation['jpeg_range2'])
out = torch.clamp(out, 0, 1)
out = self.jpeger(out, quality=jpeg_p)
# resize back + the final sinc filter
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(
out,
size=(ori_h // self.configs.model.params.sf,
ori_w // self.configs.model.params.sf),
mode=mode,
)
out = filter2D(out, sinc_kernel)
# clamp and round
im_lq = torch.clamp((out * 255.0).round(), 0, 255) / 255.
# random crop
gt_size = self.configs.degradation['gt_size']
im_gt, im_lq = paired_random_crop(im_gt, im_lq, gt_size, self.configs.model.params.sf)
self.lq, self.gt = im_lq, im_gt
# training pair pool
self._dequeue_and_enqueue()
# sharpen self.gt again, as we have changed the self.gt with self._dequeue_and_enqueue
self.lq = self.lq.contiguous() # for the warning: grad and param do not obey the gradient layout contract
return {'lq':self.lq, 'gt':self.gt}
else:
return {key:value.cuda() for key, value in data.items()}
def setup_optimizaton(self):
super().setup_optimizaton() # self.optimizer
self.lr_sheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
self.optimizer,
T_max = self.configs.train.iterations,
eta_min=self.configs.train.lr_min,
)
def training_step(self, data):
current_batchsize = data['lq'].shape[0]
micro_batchsize = self.configs.train.microbatch
num_grad_accumulate = math.ceil(current_batchsize / micro_batchsize)
self.optimizer.zero_grad()
for jj in range(0, current_batchsize, micro_batchsize):
micro_data = {key:value[jj:jj+micro_batchsize,] for key, value in data.items()}
last_batch = (jj+micro_batchsize >= current_batchsize)
hq_pred = self.model(micro_data['lq'])
if last_batch or self.num_gpus <= 1:
loss = self.loss_fun(hq_pred, micro_data['gt']) / hq_pred.shape[0]
else:
with self.model.no_sync():
loss = self.loss_fun(hq_pred, micro_data['gt']) / hq_pred.shape[0]
loss /= num_grad_accumulate
loss.backward()
# make logging
self.log_step_train(hq_pred, loss, micro_data, flag=last_batch)
self.optimizer.step()
def log_step_train(self, hq_pred, loss, batch, flag=False, phase='train'):
'''
param loss: loss value
'''
if self.rank == 0:
chn = batch['lq'].shape[1]
if self.current_iters % self.configs.train.log_freq[0] == 1:
self.loss_mean = 0
self.loss_mean += loss.item()
if self.current_iters % self.configs.train.log_freq[0] == 0 and flag:
self.loss_mean /= self.configs.train.log_freq[0]
mse_pixel = self.loss_mean / batch['gt'].numel() * batch['gt'].shape[0]
log_str = 'Train:{:05d}/{:05d}, Loss:{:.2e}, MSE:{:.2e}, lr:{:.2e}'.format(
self.current_iters // 100,
self.configs.train.iterations // 100,
self.loss_mean,
mse_pixel,
self.optimizer.param_groups[0]['lr']
)
self.logger.info(log_str)
# tensorboard
self.writer.add_scalar(f'Loss-Train', self.loss_mean, self.log_step[phase])
self.log_step[phase] += 1
if self.current_iters % self.configs.train.log_freq[1] == 0 and flag:
x1 = vutils.make_grid(batch['lq'], normalize=True, scale_each=True)
self.writer.add_image("Train LQ Image", x1, self.log_step_img[phase])
x2 = vutils.make_grid(batch['gt'], normalize=True, scale_each=True)
self.writer.add_image("Train HQ Image", x2, self.log_step_img[phase])
x3 = vutils.make_grid(hq_pred.detach().data, normalize=True, scale_each=True)
self.writer.add_image("Train Recovered Image", x3, self.log_step_img[phase])
self.log_step_img[phase] += 1
if self.current_iters % self.configs.train.save_freq == 1 and flag:
self.tic = time.time()
if self.current_iters % self.configs.train.save_freq == 0 and flag:
self.toc = time.time()
elaplsed = (self.toc - self.tic)
self.logger.info(f"Elapsed time: {elaplsed:.2f}s")
self.logger.info("="*60)
def validation(self, phase='val'):
if self.rank == 0:
self.model.eval()
psnr_mean = lpips_mean = 0
total_iters = math.ceil(len(self.datasets[phase]) / self.configs.train.batch[1])
for ii, data in enumerate(self.dataloaders[phase]):
data = self.prepare_data(data)
with torch.no_grad():
hq_pred = self.model(data['lq'])
hq_pred.clamp_(0.0, 1.0)
lpips = self.lpips_loss(
util_image.normalize_th(hq_pred, reverse=False),
util_image.normalize_th(data['gt'], reverse=False),
).sum().item()
psnr = util_image.batch_PSNR(
hq_pred,
data['gt'],
ycbcr=True
)
psnr_mean += psnr
lpips_mean += lpips
if (ii+1) % self.configs.train.log_freq[2] == 0:
log_str = '{:s}:{:03d}/{:03d}, PSNR={:5.2f}, LPIPS={:6.4f}'.format(
phase,
ii+1,
total_iters,
psnr / hq_pred.shape[0],
lpips / hq_pred.shape[0]
)
self.logger.info(log_str)
x1 = vutils.make_grid(data['lq'], normalize=True, scale_each=True)
self.writer.add_image("Validation LQ Image", x1, self.log_step_img[phase])
x2 = vutils.make_grid(data['gt'], normalize=True, scale_each=True)
self.writer.add_image("Validation HQ Image", x2, self.log_step_img[phase])
x3 = vutils.make_grid(hq_pred.detach().data, normalize=True, scale_each=True)
self.writer.add_image("Validation Recovered Image", x3, self.log_step_img[phase])
self.log_step_img[phase] += 1
psnr_mean /= len(self.datasets[phase])
lpips_mean /= len(self.datasets[phase])
# tensorboard
self.writer.add_scalar('Validation PSRN', psnr_mean, self.log_step[phase])
self.writer.add_scalar('Validation LPIPS', lpips_mean, self.log_step[phase])
self.log_step[phase] += 1
# logging
self.logger.info(f'PSNR={psnr_mean:5.2f}, LPIPS={lpips_mean:6.4f}')
self.logger.info("="*60)
self.model.train()
def build_dataloader(self):
super().build_dataloader()
if self.rank == 0 and 'val' in self.configs.data:
dataset_config = self.configs.data.get('val', dict)
self.datasets['val'] = create_dataset(dataset_config)
self.dataloaders['val'] = udata.DataLoader(
self.datasets['val'],
batch_size=self.configs.train.batch[1],
shuffle=False,
drop_last=False,
num_workers=0,
pin_memory=True,
)
class TrainerDiffusionFace(TrainerBase):
def __init__(self, configs):
# ema settings
self.ema_rates = OmegaConf.to_object(configs.train.ema_rates)
super().__init__(configs)
def init_logger(self):
super().init_logger()
save_dir = Path(self.configs.save_dir)
ema_ckpt_dir = save_dir / 'ema_ckpts'
if self.rank == 0:
if not ema_ckpt_dir.exists():
util_common.mkdir(ema_ckpt_dir, delete=False, parents=False)
else:
if not self.configs.resume:
util_common.mkdir(ema_ckpt_dir, delete=True, parents=False)
self.ema_ckpt_dir = ema_ckpt_dir
def resume_from_ckpt(self):
super().resume_from_ckpt()
def _load_ema_state(ema_state, ckpt):
for key in ema_state.keys():
ema_state[key] = deepcopy(ckpt[key].detach().data)
if self.configs.resume:
# ema model
if type(self.configs.resume) == bool:
ckpt_index = max([int(x.stem.split('_')[1]) for x in Path(self.ckpt_dir).glob('*.pth')])
ckpt_path = str(Path(self.ckpt_dir) / f"model_{ckpt_index}.pth")
else:
ckpt_path = self.configs.resume
assert os.path.isfile(ckpt_path)
# EMA model
for rate in self.ema_rates:
ema_ckpt_path = self.ema_ckpt_dir / (f"ema0{int(rate*1000)}_"+Path(ckpt_path).name)
ema_ckpt = torch.load(ema_ckpt_path, map_location=f"cuda:{self.rank}")
_load_ema_state(self.ema_state[f"0{int(rate*1000)}"], ema_ckpt)
def build_model(self):
params = self.configs.model.get('params', dict)
model = util_common.get_obj_from_str(self.configs.model.target)(**params)
self.ema_model = deepcopy(model.cuda())
if self.num_gpus > 1:
self.model = DDP(model.cuda(), device_ids=[self.rank,]) # wrap the network
else:
self.model = model.cuda()
self.ema_state = {}
for rate in self.ema_rates:
self.ema_state[f"0{int(rate*1000)}"] = OrderedDict(
{key:deepcopy(value.data) for key, value in self.model.state_dict().items()}
)
# model information
self.print_model_info()
params = self.configs.diffusion.get('params', dict)
self.base_diffusion = util_common.get_obj_from_str(self.configs.diffusion.target)(**params)
self.sample_scheduler_diffusion = UniformSampler(self.base_diffusion.num_timesteps)
def prepare_data(self, data, realesrgan=False):
data = {key:value.cuda() for key, value in data.items()}
return data
def training_step(self, data):
current_batchsize = data['image'].shape[0]
micro_batchsize = self.configs.train.microbatch
num_grad_accumulate = math.ceil(current_batchsize / micro_batchsize)
if self.configs.train.use_fp16:
scaler = amp.GradScaler()
self.optimizer.zero_grad()
for jj in range(0, current_batchsize, micro_batchsize):
micro_data = {key:value[jj:jj+micro_batchsize,] for key, value in data.items()}
last_batch = (jj+micro_batchsize >= current_batchsize)
tt, weights = self.sample_scheduler_diffusion.sample(
micro_data['image'].shape[0],
device=f"cuda:{self.rank}",
use_fp16=self.configs.train.use_fp16
)
compute_losses = functools.partial(
self.base_diffusion.training_losses,
self.model,
micro_data['image'],
tt,
model_kwargs={'y':micro_data['label']} if 'label' in micro_data else None,
)
if self.configs.train.use_fp16:
with amp.autocast():
if last_batch or self.num_gpus <= 1:
losses = compute_losses()
else:
with self.model.no_sync():
losses = compute_losses()
loss = (losses["loss"] * weights).mean() / num_grad_accumulate
scaler.scale(loss).backward()
else:
if last_batch or self.num_gpus <= 1:
losses = compute_losses()
else:
with self.model.no_sync():
losses = compute_losses()
loss = (losses["loss"] * weights).mean() / num_grad_accumulate
loss.backward()
# make logging
self.log_step_train(losses, tt, micro_data, last_batch)
if self.configs.train.use_fp16:
scaler.step(self.optimizer)
scaler.update()
else:
self.optimizer.step()
self.update_ema_model()
def update_ema_model(self):
if self.num_gpus > 1:
dist.barrier()
if self.rank == 0:
for rate in self.ema_rates:
ema_state = self.ema_state[f"0{int(rate*1000)}"]
source_state = self.model.state_dict()
for key, value in ema_state.items():
ema_state[key].mul_(rate).add_(source_state[key].detach().data, alpha=1-rate)
def adjust_lr(self, ii):
base_lr = self.configs.train.lr
linear_steps = self.configs.train.milestones[0]
if ii <= linear_steps:
for params_group in self.optimizer.param_groups:
params_group['lr'] = (ii / linear_steps) * base_lr
elif ii in self.configs.train.milestones:
for params_group in self.optimizer.param_groups:
params_group['lr'] *= 0.5
def log_step_train(self, loss, tt, batch, flag=False, phase='train'):
'''
param loss: a dict recording the loss informations
param tt: 1-D tensor, time steps
'''
if self.rank == 0:
chn = batch['image'].shape[1]
num_timesteps = self.base_diffusion.num_timesteps
if self.current_iters % self.configs.train.log_freq[0] == 1:
self.loss_mean = {key:torch.zeros(size=(num_timesteps,), dtype=torch.float64)
for key in loss.keys()}
self.loss_count = torch.zeros(size=(num_timesteps,), dtype=torch.float64)
for key, value in loss.items():
self.loss_mean[key][tt, ] += value.detach().data.cpu()
self.loss_count[tt,] += 1
if self.current_iters % self.configs.train.log_freq[0] == 0 and flag:
if torch.any(self.loss_count == 0):
self.loss_count += 1e-4
for key, value in loss.items():
self.loss_mean[key] /= self.loss_count
log_str = 'Train: {:05d}/{:05d}, Loss: '.format(
self.current_iters // 100,
self.configs.train.iterations // 100)
for kk in [1, num_timesteps // 2, num_timesteps]:
if 'vb' in self.loss_mean:
log_str += 't({:d}):{:.2e}/{:.2e}/{:.2e}, '.format(
kk,
self.loss_mean['loss'][kk-1].item(),
self.loss_mean['mse'][kk-1].item(),
self.loss_mean['vb'][kk-1].item(),
)
else:
log_str += 't({:d}):{:.2e}, '.format(kk, self.loss_mean['loss'][kk-1].item())
log_str += 'lr:{:.2e}'.format(self.optimizer.param_groups[0]['lr'])
self.logger.info(log_str)
# tensorboard
for kk in [1, num_timesteps // 2, num_timesteps]:
self.writer.add_scalar(f'Loss-Step-{kk}',
self.loss_mean['loss'][kk-1].item(),
self.log_step[phase])
self.log_step[phase] += 1
if self.current_iters % self.configs.train.log_freq[1] == 0 and flag:
x1 = vutils.make_grid(batch['image'], normalize=True, scale_each=True)
self.writer.add_image("Training Image", x1, self.log_step_img[phase])
self.log_step_img[phase] += 1
if self.current_iters % self.configs.train.save_freq == 1 and flag:
self.tic = time.time()
if self.current_iters % self.configs.train.save_freq == 0 and flag:
self.toc = time.time()
elaplsed = (self.toc - self.tic) * num_timesteps / (num_timesteps - 1)
self.logger.info(f"Elapsed time: {elaplsed:.2f}s")
self.logger.info("="*130)
def validation(self, phase='val'):
self.reload_ema_model(self.ema_rates[0])
self.ema_model.eval()
indices = [int(self.base_diffusion.num_timesteps * x) for x in [0.25, 0.5, 0.75, 1]]
chn = 3
batch_size = self.configs.train.batch[1]
shape = (batch_size, chn,) + (self.configs.data.train.params.out_size,) * 2
num_iters = 0
# noise = torch.randn(shape,
# dtype=torch.float32,
# generator=torch.Generator('cpu').manual_seed(10000)).cuda()
for sample in self.base_diffusion.p_sample_loop_progressive(
model = self.ema_model,
shape = shape,
noise = None,
clip_denoised = True,
model_kwargs = None,
device = f"cuda:{self.rank}",
progress=False
):
num_iters += 1
img = util_image.normalize_th(sample['sample'], reverse=True)
if num_iters == 1:
im_recover = img
elif num_iters in indices:
im_recover_last = img
im_recover = torch.cat((im_recover, im_recover_last), dim=1)
im_recover = rearrange(im_recover, 'b (k c) h w -> (b k) c h w', c=chn)
x1 = vutils.make_grid(im_recover, nrow=len(indices)+1, normalize=False)
self.writer.add_image('Validation Sample', x1, self.log_step_img[phase])
self.log_step_img[phase] += 1
def save_ckpt(self):
if self.rank == 0:
ckpt_path = self.ckpt_dir / 'model_{:d}.pth'.format(self.current_iters)
torch.save({'iters_start': self.current_iters,
'log_step': {phase:self.log_step[phase] for phase in ['train', 'val']},
'log_step_img': {phase:self.log_step_img[phase] for phase in ['train', 'val']},
'state_dict': self.model.state_dict()}, ckpt_path)
for rate in self.ema_rates:
ema_ckpt_path = self.ema_ckpt_dir / (f"ema0{int(rate*1000)}_"+ckpt_path.name)
torch.save(self.ema_state[f"0{int(rate*1000)}"], ema_ckpt_path)
def calculate_lpips(self, inputs, targets):
inputs, targets = [(x-0.5)/0.5 for x in [inputs, targets]] # [-1, 1]
with torch.no_grad():
mean_lpips = self.lpips_loss(inputs, targets)
return mean_lpips.mean().item()
def reload_ema_model(self, rate):
model_state = {key[7:]:value for key, value in self.ema_state[f"0{int(rate*1000)}"].items()}
self.ema_model.load_state_dict(model_state)
def my_worker_init_fn(worker_id):
np.random.seed(np.random.get_state()[1][0] + worker_id)
if __name__ == '__main__':
from utils import util_image
from einops import rearrange
im1 = util_image.imread('./testdata/inpainting/val/places/Places365_val_00012685_crop000.png',
chn = 'rgb', dtype='float32')
im2 = util_image.imread('./testdata/inpainting/val/places/Places365_val_00014886_crop000.png',
chn = 'rgb', dtype='float32')
im = rearrange(np.stack((im1, im2), 3), 'h w c b -> b c h w')
im_grid = im.copy()
for alpha in [0.8, 0.4, 0.1, 0]:
im_new = im * alpha + np.random.randn(*im.shape) * (1 - alpha)
im_grid = np.concatenate((im_new, im_grid), 1)
im_grid = np.clip(im_grid, 0.0, 1.0)
im_grid = rearrange(im_grid, 'b (k c) h w -> (b k) c h w', k=5)
xx = vutils.make_grid(torch.from_numpy(im_grid), nrow=5, normalize=True, scale_each=True).numpy()
util_image.imshow(np.concatenate((im1, im2), 0))
util_image.imshow(xx.transpose((1,2,0)))
|