File size: 4,398 Bytes
06f26d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import os
import torch
from torch import nn
from copy import deepcopy

from facelib.utils import load_file_from_url
from facelib.utils import download_pretrained_models
from facelib.detection.yolov5face.models.common import Conv

from .retinaface.retinaface import RetinaFace
from .yolov5face.face_detector import YoloDetector


def init_detection_model(model_name, half=False, device='cuda'):
    if 'retinaface' in model_name:
        model = init_retinaface_model(model_name, half, device)
    elif 'YOLOv5' in model_name:
        model = init_yolov5face_model(model_name, device)
    else:
        raise NotImplementedError(f'{model_name} is not implemented.')

    return model


def init_retinaface_model(model_name, half=False, device='cuda'):
    if model_name == 'retinaface_resnet50':
        model = RetinaFace(network_name='resnet50', half=half)
        model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth'
    elif model_name == 'retinaface_mobile0.25':
        model = RetinaFace(network_name='mobile0.25', half=half)
        model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_mobilenet0.25_Final.pth'
    else:
        raise NotImplementedError(f'{model_name} is not implemented.')

    model_path = load_file_from_url(url=model_url, model_dir='weights/facelib', progress=True, file_name=None)
    load_net = torch.load(model_path, map_location=lambda storage, loc: storage)
    # remove unnecessary 'module.'
    for k, v in deepcopy(load_net).items():
        if k.startswith('module.'):
            load_net[k[7:]] = v
            load_net.pop(k)
    model.load_state_dict(load_net, strict=True)
    model.eval()
    model = model.to(device)

    return model


def init_yolov5face_model(model_name, device='cuda'):
    if model_name == 'YOLOv5l':
        model = YoloDetector(config_name='facelib/detection/yolov5face/models/yolov5l.yaml', device=device)
        model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/yolov5l-face.pth'
    elif model_name == 'YOLOv5n':
        model = YoloDetector(config_name='facelib/detection/yolov5face/models/yolov5n.yaml', device=device)
        model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/yolov5n-face.pth'
    else:
        raise NotImplementedError(f'{model_name} is not implemented.')
    
    model_path = load_file_from_url(url=model_url, model_dir='weights/facelib', progress=True, file_name=None)
    load_net = torch.load(model_path, map_location=lambda storage, loc: storage)
    model.detector.load_state_dict(load_net, strict=True)
    model.detector.eval()
    model.detector = model.detector.to(device).float()

    for m in model.detector.modules():
        if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
            m.inplace = True  # pytorch 1.7.0 compatibility
        elif isinstance(m, Conv):
            m._non_persistent_buffers_set = set()  # pytorch 1.6.0 compatibility

    return model


# Download from Google Drive
# def init_yolov5face_model(model_name, device='cuda'):
#     if model_name == 'YOLOv5l':
#         model = YoloDetector(config_name='facelib/detection/yolov5face/models/yolov5l.yaml', device=device)
#         f_id = {'yolov5l-face.pth': '131578zMA6B2x8VQHyHfa6GEPtulMCNzV'}
#     elif model_name == 'YOLOv5n':
#         model = YoloDetector(config_name='facelib/detection/yolov5face/models/yolov5n.yaml', device=device)
#         f_id = {'yolov5n-face.pth': '1fhcpFvWZqghpGXjYPIne2sw1Fy4yhw6o'}
#     else:
#         raise NotImplementedError(f'{model_name} is not implemented.')

#     model_path = os.path.join('weights/facelib', list(f_id.keys())[0])
#     if not os.path.exists(model_path):
#         download_pretrained_models(file_ids=f_id, save_path_root='weights/facelib')

#     load_net = torch.load(model_path, map_location=lambda storage, loc: storage)
#     model.detector.load_state_dict(load_net, strict=True)
#     model.detector.eval()
#     model.detector = model.detector.to(device).float()

#     for m in model.detector.modules():
#         if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
#             m.inplace = True  # pytorch 1.7.0 compatibility
#         elif isinstance(m, Conv):
#             m._non_persistent_buffers_set = set()  # pytorch 1.6.0 compatibility

#     return model