Spaces:
Running
on
T4
Running
on
T4
File size: 13,327 Bytes
06f26d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
import cv2
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image
from torchvision.models._utils import IntermediateLayerGetter as IntermediateLayerGetter
from facelib.detection.align_trans import get_reference_facial_points, warp_and_crop_face
from facelib.detection.retinaface.retinaface_net import FPN, SSH, MobileNetV1, make_bbox_head, make_class_head, make_landmark_head
from facelib.detection.retinaface.retinaface_utils import (PriorBox, batched_decode, batched_decode_landm, decode, decode_landm,
py_cpu_nms)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def generate_config(network_name):
cfg_mnet = {
'name': 'mobilenet0.25',
'min_sizes': [[16, 32], [64, 128], [256, 512]],
'steps': [8, 16, 32],
'variance': [0.1, 0.2],
'clip': False,
'loc_weight': 2.0,
'gpu_train': True,
'batch_size': 32,
'ngpu': 1,
'epoch': 250,
'decay1': 190,
'decay2': 220,
'image_size': 640,
'return_layers': {
'stage1': 1,
'stage2': 2,
'stage3': 3
},
'in_channel': 32,
'out_channel': 64
}
cfg_re50 = {
'name': 'Resnet50',
'min_sizes': [[16, 32], [64, 128], [256, 512]],
'steps': [8, 16, 32],
'variance': [0.1, 0.2],
'clip': False,
'loc_weight': 2.0,
'gpu_train': True,
'batch_size': 24,
'ngpu': 4,
'epoch': 100,
'decay1': 70,
'decay2': 90,
'image_size': 840,
'return_layers': {
'layer2': 1,
'layer3': 2,
'layer4': 3
},
'in_channel': 256,
'out_channel': 256
}
if network_name == 'mobile0.25':
return cfg_mnet
elif network_name == 'resnet50':
return cfg_re50
else:
raise NotImplementedError(f'network_name={network_name}')
class RetinaFace(nn.Module):
def __init__(self, network_name='resnet50', half=False, phase='test'):
super(RetinaFace, self).__init__()
self.half_inference = half
cfg = generate_config(network_name)
self.backbone = cfg['name']
self.model_name = f'retinaface_{network_name}'
self.cfg = cfg
self.phase = phase
self.target_size, self.max_size = 1600, 2150
self.resize, self.scale, self.scale1 = 1., None, None
self.mean_tensor = torch.tensor([[[[104.]], [[117.]], [[123.]]]]).to(device)
self.reference = get_reference_facial_points(default_square=True)
# Build network.
backbone = None
if cfg['name'] == 'mobilenet0.25':
backbone = MobileNetV1()
self.body = IntermediateLayerGetter(backbone, cfg['return_layers'])
elif cfg['name'] == 'Resnet50':
import torchvision.models as models
backbone = models.resnet50(pretrained=False)
self.body = IntermediateLayerGetter(backbone, cfg['return_layers'])
in_channels_stage2 = cfg['in_channel']
in_channels_list = [
in_channels_stage2 * 2,
in_channels_stage2 * 4,
in_channels_stage2 * 8,
]
out_channels = cfg['out_channel']
self.fpn = FPN(in_channels_list, out_channels)
self.ssh1 = SSH(out_channels, out_channels)
self.ssh2 = SSH(out_channels, out_channels)
self.ssh3 = SSH(out_channels, out_channels)
self.ClassHead = make_class_head(fpn_num=3, inchannels=cfg['out_channel'])
self.BboxHead = make_bbox_head(fpn_num=3, inchannels=cfg['out_channel'])
self.LandmarkHead = make_landmark_head(fpn_num=3, inchannels=cfg['out_channel'])
self.to(device)
self.eval()
if self.half_inference:
self.half()
def forward(self, inputs):
out = self.body(inputs)
if self.backbone == 'mobilenet0.25' or self.backbone == 'Resnet50':
out = list(out.values())
# FPN
fpn = self.fpn(out)
# SSH
feature1 = self.ssh1(fpn[0])
feature2 = self.ssh2(fpn[1])
feature3 = self.ssh3(fpn[2])
features = [feature1, feature2, feature3]
bbox_regressions = torch.cat([self.BboxHead[i](feature) for i, feature in enumerate(features)], dim=1)
classifications = torch.cat([self.ClassHead[i](feature) for i, feature in enumerate(features)], dim=1)
tmp = [self.LandmarkHead[i](feature) for i, feature in enumerate(features)]
ldm_regressions = (torch.cat(tmp, dim=1))
if self.phase == 'train':
output = (bbox_regressions, classifications, ldm_regressions)
else:
output = (bbox_regressions, F.softmax(classifications, dim=-1), ldm_regressions)
return output
def __detect_faces(self, inputs):
# get scale
height, width = inputs.shape[2:]
self.scale = torch.tensor([width, height, width, height], dtype=torch.float32).to(device)
tmp = [width, height, width, height, width, height, width, height, width, height]
self.scale1 = torch.tensor(tmp, dtype=torch.float32).to(device)
# forawrd
inputs = inputs.to(device)
if self.half_inference:
inputs = inputs.half()
loc, conf, landmarks = self(inputs)
# get priorbox
priorbox = PriorBox(self.cfg, image_size=inputs.shape[2:])
priors = priorbox.forward().to(device)
return loc, conf, landmarks, priors
# single image detection
def transform(self, image, use_origin_size):
# convert to opencv format
if isinstance(image, Image.Image):
image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
image = image.astype(np.float32)
# testing scale
im_size_min = np.min(image.shape[0:2])
im_size_max = np.max(image.shape[0:2])
resize = float(self.target_size) / float(im_size_min)
# prevent bigger axis from being more than max_size
if np.round(resize * im_size_max) > self.max_size:
resize = float(self.max_size) / float(im_size_max)
resize = 1 if use_origin_size else resize
# resize
if resize != 1:
image = cv2.resize(image, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR)
# convert to torch.tensor format
# image -= (104, 117, 123)
image = image.transpose(2, 0, 1)
image = torch.from_numpy(image).unsqueeze(0)
return image, resize
def detect_faces(
self,
image,
conf_threshold=0.8,
nms_threshold=0.4,
use_origin_size=True,
):
"""
Params:
imgs: BGR image
"""
image, self.resize = self.transform(image, use_origin_size)
image = image.to(device)
if self.half_inference:
image = image.half()
image = image - self.mean_tensor
loc, conf, landmarks, priors = self.__detect_faces(image)
boxes = decode(loc.data.squeeze(0), priors.data, self.cfg['variance'])
boxes = boxes * self.scale / self.resize
boxes = boxes.cpu().numpy()
scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
landmarks = decode_landm(landmarks.squeeze(0), priors, self.cfg['variance'])
landmarks = landmarks * self.scale1 / self.resize
landmarks = landmarks.cpu().numpy()
# ignore low scores
inds = np.where(scores > conf_threshold)[0]
boxes, landmarks, scores = boxes[inds], landmarks[inds], scores[inds]
# sort
order = scores.argsort()[::-1]
boxes, landmarks, scores = boxes[order], landmarks[order], scores[order]
# do NMS
bounding_boxes = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
keep = py_cpu_nms(bounding_boxes, nms_threshold)
bounding_boxes, landmarks = bounding_boxes[keep, :], landmarks[keep]
# self.t['forward_pass'].toc()
# print(self.t['forward_pass'].average_time)
# import sys
# sys.stdout.flush()
return np.concatenate((bounding_boxes, landmarks), axis=1)
def __align_multi(self, image, boxes, landmarks, limit=None):
if len(boxes) < 1:
return [], []
if limit:
boxes = boxes[:limit]
landmarks = landmarks[:limit]
faces = []
for landmark in landmarks:
facial5points = [[landmark[2 * j], landmark[2 * j + 1]] for j in range(5)]
warped_face = warp_and_crop_face(np.array(image), facial5points, self.reference, crop_size=(112, 112))
faces.append(warped_face)
return np.concatenate((boxes, landmarks), axis=1), faces
def align_multi(self, img, conf_threshold=0.8, limit=None):
rlt = self.detect_faces(img, conf_threshold=conf_threshold)
boxes, landmarks = rlt[:, 0:5], rlt[:, 5:]
return self.__align_multi(img, boxes, landmarks, limit)
# batched detection
def batched_transform(self, frames, use_origin_size):
"""
Arguments:
frames: a list of PIL.Image, or torch.Tensor(shape=[n, h, w, c],
type=np.float32, BGR format).
use_origin_size: whether to use origin size.
"""
from_PIL = True if isinstance(frames[0], Image.Image) else False
# convert to opencv format
if from_PIL:
frames = [cv2.cvtColor(np.asarray(frame), cv2.COLOR_RGB2BGR) for frame in frames]
frames = np.asarray(frames, dtype=np.float32)
# testing scale
im_size_min = np.min(frames[0].shape[0:2])
im_size_max = np.max(frames[0].shape[0:2])
resize = float(self.target_size) / float(im_size_min)
# prevent bigger axis from being more than max_size
if np.round(resize * im_size_max) > self.max_size:
resize = float(self.max_size) / float(im_size_max)
resize = 1 if use_origin_size else resize
# resize
if resize != 1:
if not from_PIL:
frames = F.interpolate(frames, scale_factor=resize)
else:
frames = [
cv2.resize(frame, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR)
for frame in frames
]
# convert to torch.tensor format
if not from_PIL:
frames = frames.transpose(1, 2).transpose(1, 3).contiguous()
else:
frames = frames.transpose((0, 3, 1, 2))
frames = torch.from_numpy(frames)
return frames, resize
def batched_detect_faces(self, frames, conf_threshold=0.8, nms_threshold=0.4, use_origin_size=True):
"""
Arguments:
frames: a list of PIL.Image, or np.array(shape=[n, h, w, c],
type=np.uint8, BGR format).
conf_threshold: confidence threshold.
nms_threshold: nms threshold.
use_origin_size: whether to use origin size.
Returns:
final_bounding_boxes: list of np.array ([n_boxes, 5],
type=np.float32).
final_landmarks: list of np.array ([n_boxes, 10], type=np.float32).
"""
# self.t['forward_pass'].tic()
frames, self.resize = self.batched_transform(frames, use_origin_size)
frames = frames.to(device)
frames = frames - self.mean_tensor
b_loc, b_conf, b_landmarks, priors = self.__detect_faces(frames)
final_bounding_boxes, final_landmarks = [], []
# decode
priors = priors.unsqueeze(0)
b_loc = batched_decode(b_loc, priors, self.cfg['variance']) * self.scale / self.resize
b_landmarks = batched_decode_landm(b_landmarks, priors, self.cfg['variance']) * self.scale1 / self.resize
b_conf = b_conf[:, :, 1]
# index for selection
b_indice = b_conf > conf_threshold
# concat
b_loc_and_conf = torch.cat((b_loc, b_conf.unsqueeze(-1)), dim=2).float()
for pred, landm, inds in zip(b_loc_and_conf, b_landmarks, b_indice):
# ignore low scores
pred, landm = pred[inds, :], landm[inds, :]
if pred.shape[0] == 0:
final_bounding_boxes.append(np.array([], dtype=np.float32))
final_landmarks.append(np.array([], dtype=np.float32))
continue
# sort
# order = score.argsort(descending=True)
# box, landm, score = box[order], landm[order], score[order]
# to CPU
bounding_boxes, landm = pred.cpu().numpy(), landm.cpu().numpy()
# NMS
keep = py_cpu_nms(bounding_boxes, nms_threshold)
bounding_boxes, landmarks = bounding_boxes[keep, :], landm[keep]
# append
final_bounding_boxes.append(bounding_boxes)
final_landmarks.append(landmarks)
# self.t['forward_pass'].toc(average=True)
# self.batch_time += self.t['forward_pass'].diff
# self.total_frame += len(frames)
# print(self.batch_time / self.total_frame)
return final_bounding_boxes, final_landmarks
|