File size: 4,621 Bytes
06f26d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import torch
from torch import nn as nn
from torch.nn import functional as F

from basicsr.utils.registry import ARCH_REGISTRY
from .arch_util import default_init_weights, make_layer, pixel_unshuffle


class ResidualDenseBlock(nn.Module):
    """Residual Dense Block.

    Used in RRDB block in ESRGAN.

    Args:
        num_feat (int): Channel number of intermediate features.
        num_grow_ch (int): Channels for each growth.
    """

    def __init__(self, num_feat=64, num_grow_ch=32):
        super(ResidualDenseBlock, self).__init__()
        self.conv1 = nn.Conv2d(num_feat, num_grow_ch, 3, 1, 1)
        self.conv2 = nn.Conv2d(num_feat + num_grow_ch, num_grow_ch, 3, 1, 1)
        self.conv3 = nn.Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, 3, 1, 1)
        self.conv4 = nn.Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, 3, 1, 1)
        self.conv5 = nn.Conv2d(num_feat + 4 * num_grow_ch, num_feat, 3, 1, 1)

        self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)

        # initialization
        default_init_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)

    def forward(self, x):
        x1 = self.lrelu(self.conv1(x))
        x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
        x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
        x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
        x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
        # Empirically, we use 0.2 to scale the residual for better performance
        return x5 * 0.2 + x


class RRDB(nn.Module):
    """Residual in Residual Dense Block.

    Used in RRDB-Net in ESRGAN.

    Args:
        num_feat (int): Channel number of intermediate features.
        num_grow_ch (int): Channels for each growth.
    """

    def __init__(self, num_feat, num_grow_ch=32):
        super(RRDB, self).__init__()
        self.rdb1 = ResidualDenseBlock(num_feat, num_grow_ch)
        self.rdb2 = ResidualDenseBlock(num_feat, num_grow_ch)
        self.rdb3 = ResidualDenseBlock(num_feat, num_grow_ch)

    def forward(self, x):
        out = self.rdb1(x)
        out = self.rdb2(out)
        out = self.rdb3(out)
        # Empirically, we use 0.2 to scale the residual for better performance
        return out * 0.2 + x


@ARCH_REGISTRY.register()
class RRDBNet(nn.Module):
    """Networks consisting of Residual in Residual Dense Block, which is used
    in ESRGAN.

    ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks.

    We extend ESRGAN for scale x2 and scale x1.
    Note: This is one option for scale 1, scale 2 in RRDBNet.
    We first employ the pixel-unshuffle (an inverse operation of pixelshuffle to reduce the spatial size
    and enlarge the channel size before feeding inputs into the main ESRGAN architecture.

    Args:
        num_in_ch (int): Channel number of inputs.
        num_out_ch (int): Channel number of outputs.
        num_feat (int): Channel number of intermediate features.
            Default: 64
        num_block (int): Block number in the trunk network. Defaults: 23
        num_grow_ch (int): Channels for each growth. Default: 32.
    """

    def __init__(self, num_in_ch, num_out_ch, scale=4, num_feat=64, num_block=23, num_grow_ch=32):
        super(RRDBNet, self).__init__()
        self.scale = scale
        if scale == 2:
            num_in_ch = num_in_ch * 4
        elif scale == 1:
            num_in_ch = num_in_ch * 16
        self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
        self.body = make_layer(RRDB, num_block, num_feat=num_feat, num_grow_ch=num_grow_ch)
        self.conv_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
        # upsample
        self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
        self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
        self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
        self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)

        self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)

    def forward(self, x):
        if self.scale == 2:
            feat = pixel_unshuffle(x, scale=2)
        elif self.scale == 1:
            feat = pixel_unshuffle(x, scale=4)
        else:
            feat = x
        feat = self.conv_first(feat)
        body_feat = self.conv_body(self.body(feat))
        feat = feat + body_feat
        # upsample
        feat = self.lrelu(self.conv_up1(F.interpolate(feat, scale_factor=2, mode='nearest')))
        feat = self.lrelu(self.conv_up2(F.interpolate(feat, scale_factor=2, mode='nearest')))
        out = self.conv_last(self.lrelu(self.conv_hr(feat)))
        return out