Spaces:
Sleeping
Sleeping
import numpy as np | |
import torch | |
from torch import nn as nn | |
from torch.nn import functional as F | |
from basicsr.utils.registry import ARCH_REGISTRY | |
class DenseBlocksTemporalReduce(nn.Module): | |
"""A concatenation of 3 dense blocks with reduction in temporal dimension. | |
Note that the output temporal dimension is 6 fewer the input temporal dimension, since there are 3 blocks. | |
Args: | |
num_feat (int): Number of channels in the blocks. Default: 64. | |
num_grow_ch (int): Growing factor of the dense blocks. Default: 32 | |
adapt_official_weights (bool): Whether to adapt the weights translated from the official implementation. | |
Set to false if you want to train from scratch. Default: False. | |
""" | |
def __init__(self, num_feat=64, num_grow_ch=32, adapt_official_weights=False): | |
super(DenseBlocksTemporalReduce, self).__init__() | |
if adapt_official_weights: | |
eps = 1e-3 | |
momentum = 1e-3 | |
else: # pytorch default values | |
eps = 1e-05 | |
momentum = 0.1 | |
self.temporal_reduce1 = nn.Sequential( | |
nn.BatchNorm3d(num_feat, eps=eps, momentum=momentum), nn.ReLU(inplace=True), | |
nn.Conv3d(num_feat, num_feat, (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True), | |
nn.BatchNorm3d(num_feat, eps=eps, momentum=momentum), nn.ReLU(inplace=True), | |
nn.Conv3d(num_feat, num_grow_ch, (3, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True)) | |
self.temporal_reduce2 = nn.Sequential( | |
nn.BatchNorm3d(num_feat + num_grow_ch, eps=eps, momentum=momentum), nn.ReLU(inplace=True), | |
nn.Conv3d( | |
num_feat + num_grow_ch, | |
num_feat + num_grow_ch, (1, 1, 1), | |
stride=(1, 1, 1), | |
padding=(0, 0, 0), | |
bias=True), nn.BatchNorm3d(num_feat + num_grow_ch, eps=eps, momentum=momentum), nn.ReLU(inplace=True), | |
nn.Conv3d(num_feat + num_grow_ch, num_grow_ch, (3, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True)) | |
self.temporal_reduce3 = nn.Sequential( | |
nn.BatchNorm3d(num_feat + 2 * num_grow_ch, eps=eps, momentum=momentum), nn.ReLU(inplace=True), | |
nn.Conv3d( | |
num_feat + 2 * num_grow_ch, | |
num_feat + 2 * num_grow_ch, (1, 1, 1), | |
stride=(1, 1, 1), | |
padding=(0, 0, 0), | |
bias=True), nn.BatchNorm3d(num_feat + 2 * num_grow_ch, eps=eps, momentum=momentum), | |
nn.ReLU(inplace=True), | |
nn.Conv3d( | |
num_feat + 2 * num_grow_ch, num_grow_ch, (3, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True)) | |
def forward(self, x): | |
""" | |
Args: | |
x (Tensor): Input tensor with shape (b, num_feat, t, h, w). | |
Returns: | |
Tensor: Output with shape (b, num_feat + num_grow_ch * 3, 1, h, w). | |
""" | |
x1 = self.temporal_reduce1(x) | |
x1 = torch.cat((x[:, :, 1:-1, :, :], x1), 1) | |
x2 = self.temporal_reduce2(x1) | |
x2 = torch.cat((x1[:, :, 1:-1, :, :], x2), 1) | |
x3 = self.temporal_reduce3(x2) | |
x3 = torch.cat((x2[:, :, 1:-1, :, :], x3), 1) | |
return x3 | |
class DenseBlocks(nn.Module): | |
""" A concatenation of N dense blocks. | |
Args: | |
num_feat (int): Number of channels in the blocks. Default: 64. | |
num_grow_ch (int): Growing factor of the dense blocks. Default: 32. | |
num_block (int): Number of dense blocks. The values are: | |
DUF-S (16 layers): 3 | |
DUF-M (18 layers): 9 | |
DUF-L (52 layers): 21 | |
adapt_official_weights (bool): Whether to adapt the weights translated from the official implementation. | |
Set to false if you want to train from scratch. Default: False. | |
""" | |
def __init__(self, num_block, num_feat=64, num_grow_ch=16, adapt_official_weights=False): | |
super(DenseBlocks, self).__init__() | |
if adapt_official_weights: | |
eps = 1e-3 | |
momentum = 1e-3 | |
else: # pytorch default values | |
eps = 1e-05 | |
momentum = 0.1 | |
self.dense_blocks = nn.ModuleList() | |
for i in range(0, num_block): | |
self.dense_blocks.append( | |
nn.Sequential( | |
nn.BatchNorm3d(num_feat + i * num_grow_ch, eps=eps, momentum=momentum), nn.ReLU(inplace=True), | |
nn.Conv3d( | |
num_feat + i * num_grow_ch, | |
num_feat + i * num_grow_ch, (1, 1, 1), | |
stride=(1, 1, 1), | |
padding=(0, 0, 0), | |
bias=True), nn.BatchNorm3d(num_feat + i * num_grow_ch, eps=eps, momentum=momentum), | |
nn.ReLU(inplace=True), | |
nn.Conv3d( | |
num_feat + i * num_grow_ch, | |
num_grow_ch, (3, 3, 3), | |
stride=(1, 1, 1), | |
padding=(1, 1, 1), | |
bias=True))) | |
def forward(self, x): | |
""" | |
Args: | |
x (Tensor): Input tensor with shape (b, num_feat, t, h, w). | |
Returns: | |
Tensor: Output with shape (b, num_feat + num_block * num_grow_ch, t, h, w). | |
""" | |
for i in range(0, len(self.dense_blocks)): | |
y = self.dense_blocks[i](x) | |
x = torch.cat((x, y), 1) | |
return x | |
class DynamicUpsamplingFilter(nn.Module): | |
"""Dynamic upsampling filter used in DUF. | |
Reference: https://github.com/yhjo09/VSR-DUF | |
It only supports input with 3 channels. And it applies the same filters to 3 channels. | |
Args: | |
filter_size (tuple): Filter size of generated filters. The shape is (kh, kw). Default: (5, 5). | |
""" | |
def __init__(self, filter_size=(5, 5)): | |
super(DynamicUpsamplingFilter, self).__init__() | |
if not isinstance(filter_size, tuple): | |
raise TypeError(f'The type of filter_size must be tuple, but got type{filter_size}') | |
if len(filter_size) != 2: | |
raise ValueError(f'The length of filter size must be 2, but got {len(filter_size)}.') | |
# generate a local expansion filter, similar to im2col | |
self.filter_size = filter_size | |
filter_prod = np.prod(filter_size) | |
expansion_filter = torch.eye(int(filter_prod)).view(filter_prod, 1, *filter_size) # (kh*kw, 1, kh, kw) | |
self.expansion_filter = expansion_filter.repeat(3, 1, 1, 1) # repeat for all the 3 channels | |
def forward(self, x, filters): | |
"""Forward function for DynamicUpsamplingFilter. | |
Args: | |
x (Tensor): Input image with 3 channels. The shape is (n, 3, h, w). | |
filters (Tensor): Generated dynamic filters. The shape is (n, filter_prod, upsampling_square, h, w). | |
filter_prod: prod of filter kernel size, e.g., 1*5*5=25. | |
upsampling_square: similar to pixel shuffle, upsampling_square = upsampling * upsampling. | |
e.g., for x 4 upsampling, upsampling_square= 4*4 = 16 | |
Returns: | |
Tensor: Filtered image with shape (n, 3*upsampling_square, h, w) | |
""" | |
n, filter_prod, upsampling_square, h, w = filters.size() | |
kh, kw = self.filter_size | |
expanded_input = F.conv2d( | |
x, self.expansion_filter.to(x), padding=(kh // 2, kw // 2), groups=3) # (n, 3*filter_prod, h, w) | |
expanded_input = expanded_input.view(n, 3, filter_prod, h, w).permute(0, 3, 4, 1, | |
2) # (n, h, w, 3, filter_prod) | |
filters = filters.permute(0, 3, 4, 1, 2) # (n, h, w, filter_prod, upsampling_square] | |
out = torch.matmul(expanded_input, filters) # (n, h, w, 3, upsampling_square) | |
return out.permute(0, 3, 4, 1, 2).view(n, 3 * upsampling_square, h, w) | |
class DUF(nn.Module): | |
"""Network architecture for DUF | |
``Paper: Deep Video Super-Resolution Network Using Dynamic Upsampling Filters Without Explicit Motion Compensation`` | |
Reference: https://github.com/yhjo09/VSR-DUF | |
For all the models below, 'adapt_official_weights' is only necessary when | |
loading the weights converted from the official TensorFlow weights. | |
Please set it to False if you are training the model from scratch. | |
There are three models with different model size: DUF16Layers, DUF28Layers, | |
and DUF52Layers. This class is the base class for these models. | |
Args: | |
scale (int): The upsampling factor. Default: 4. | |
num_layer (int): The number of layers. Default: 52. | |
adapt_official_weights_weights (bool): Whether to adapt the weights | |
translated from the official implementation. Set to false if you | |
want to train from scratch. Default: False. | |
""" | |
def __init__(self, scale=4, num_layer=52, adapt_official_weights=False): | |
super(DUF, self).__init__() | |
self.scale = scale | |
if adapt_official_weights: | |
eps = 1e-3 | |
momentum = 1e-3 | |
else: # pytorch default values | |
eps = 1e-05 | |
momentum = 0.1 | |
self.conv3d1 = nn.Conv3d(3, 64, (1, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True) | |
self.dynamic_filter = DynamicUpsamplingFilter((5, 5)) | |
if num_layer == 16: | |
num_block = 3 | |
num_grow_ch = 32 | |
elif num_layer == 28: | |
num_block = 9 | |
num_grow_ch = 16 | |
elif num_layer == 52: | |
num_block = 21 | |
num_grow_ch = 16 | |
else: | |
raise ValueError(f'Only supported (16, 28, 52) layers, but got {num_layer}.') | |
self.dense_block1 = DenseBlocks( | |
num_block=num_block, num_feat=64, num_grow_ch=num_grow_ch, | |
adapt_official_weights=adapt_official_weights) # T = 7 | |
self.dense_block2 = DenseBlocksTemporalReduce( | |
64 + num_grow_ch * num_block, num_grow_ch, adapt_official_weights=adapt_official_weights) # T = 1 | |
channels = 64 + num_grow_ch * num_block + num_grow_ch * 3 | |
self.bn3d2 = nn.BatchNorm3d(channels, eps=eps, momentum=momentum) | |
self.conv3d2 = nn.Conv3d(channels, 256, (1, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True) | |
self.conv3d_r1 = nn.Conv3d(256, 256, (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True) | |
self.conv3d_r2 = nn.Conv3d(256, 3 * (scale**2), (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True) | |
self.conv3d_f1 = nn.Conv3d(256, 512, (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True) | |
self.conv3d_f2 = nn.Conv3d( | |
512, 1 * 5 * 5 * (scale**2), (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True) | |
def forward(self, x): | |
""" | |
Args: | |
x (Tensor): Input with shape (b, 7, c, h, w) | |
Returns: | |
Tensor: Output with shape (b, c, h * scale, w * scale) | |
""" | |
num_batches, num_imgs, _, h, w = x.size() | |
x = x.permute(0, 2, 1, 3, 4) # (b, c, 7, h, w) for Conv3D | |
x_center = x[:, :, num_imgs // 2, :, :] | |
x = self.conv3d1(x) | |
x = self.dense_block1(x) | |
x = self.dense_block2(x) | |
x = F.relu(self.bn3d2(x), inplace=True) | |
x = F.relu(self.conv3d2(x), inplace=True) | |
# residual image | |
res = self.conv3d_r2(F.relu(self.conv3d_r1(x), inplace=True)) | |
# filter | |
filter_ = self.conv3d_f2(F.relu(self.conv3d_f1(x), inplace=True)) | |
filter_ = F.softmax(filter_.view(num_batches, 25, self.scale**2, h, w), dim=1) | |
# dynamic filter | |
out = self.dynamic_filter(x_center, filter_) | |
out += res.squeeze_(2) | |
out = F.pixel_shuffle(out, self.scale) | |
return out | |