Spaces:
Sleeping
Sleeping
import cv2 | |
import numpy as np | |
from .matlab_cp2tform import get_similarity_transform_for_cv2 | |
# reference facial points, a list of coordinates (x,y) | |
REFERENCE_FACIAL_POINTS = [[30.29459953, 51.69630051], [65.53179932, 51.50139999], [48.02519989, 71.73660278], | |
[33.54930115, 92.3655014], [62.72990036, 92.20410156]] | |
DEFAULT_CROP_SIZE = (96, 112) | |
class FaceWarpException(Exception): | |
def __str__(self): | |
return 'In File {}:{}'.format(__file__, super.__str__(self)) | |
def get_reference_facial_points(output_size=None, inner_padding_factor=0.0, outer_padding=(0, 0), default_square=False): | |
""" | |
Function: | |
---------- | |
get reference 5 key points according to crop settings: | |
0. Set default crop_size: | |
if default_square: | |
crop_size = (112, 112) | |
else: | |
crop_size = (96, 112) | |
1. Pad the crop_size by inner_padding_factor in each side; | |
2. Resize crop_size into (output_size - outer_padding*2), | |
pad into output_size with outer_padding; | |
3. Output reference_5point; | |
Parameters: | |
---------- | |
@output_size: (w, h) or None | |
size of aligned face image | |
@inner_padding_factor: (w_factor, h_factor) | |
padding factor for inner (w, h) | |
@outer_padding: (w_pad, h_pad) | |
each row is a pair of coordinates (x, y) | |
@default_square: True or False | |
if True: | |
default crop_size = (112, 112) | |
else: | |
default crop_size = (96, 112); | |
!!! make sure, if output_size is not None: | |
(output_size - outer_padding) | |
= some_scale * (default crop_size * (1.0 + | |
inner_padding_factor)) | |
Returns: | |
---------- | |
@reference_5point: 5x2 np.array | |
each row is a pair of transformed coordinates (x, y) | |
""" | |
tmp_5pts = np.array(REFERENCE_FACIAL_POINTS) | |
tmp_crop_size = np.array(DEFAULT_CROP_SIZE) | |
# 0) make the inner region a square | |
if default_square: | |
size_diff = max(tmp_crop_size) - tmp_crop_size | |
tmp_5pts += size_diff / 2 | |
tmp_crop_size += size_diff | |
if (output_size and output_size[0] == tmp_crop_size[0] and output_size[1] == tmp_crop_size[1]): | |
return tmp_5pts | |
if (inner_padding_factor == 0 and outer_padding == (0, 0)): | |
if output_size is None: | |
return tmp_5pts | |
else: | |
raise FaceWarpException('No paddings to do, output_size must be None or {}'.format(tmp_crop_size)) | |
# check output size | |
if not (0 <= inner_padding_factor <= 1.0): | |
raise FaceWarpException('Not (0 <= inner_padding_factor <= 1.0)') | |
if ((inner_padding_factor > 0 or outer_padding[0] > 0 or outer_padding[1] > 0) and output_size is None): | |
output_size = tmp_crop_size * \ | |
(1 + inner_padding_factor * 2).astype(np.int32) | |
output_size += np.array(outer_padding) | |
if not (outer_padding[0] < output_size[0] and outer_padding[1] < output_size[1]): | |
raise FaceWarpException('Not (outer_padding[0] < output_size[0] and outer_padding[1] < output_size[1])') | |
# 1) pad the inner region according inner_padding_factor | |
if inner_padding_factor > 0: | |
size_diff = tmp_crop_size * inner_padding_factor * 2 | |
tmp_5pts += size_diff / 2 | |
tmp_crop_size += np.round(size_diff).astype(np.int32) | |
# 2) resize the padded inner region | |
size_bf_outer_pad = np.array(output_size) - np.array(outer_padding) * 2 | |
if size_bf_outer_pad[0] * tmp_crop_size[1] != size_bf_outer_pad[1] * tmp_crop_size[0]: | |
raise FaceWarpException('Must have (output_size - outer_padding)' | |
'= some_scale * (crop_size * (1.0 + inner_padding_factor)') | |
scale_factor = size_bf_outer_pad[0].astype(np.float32) / tmp_crop_size[0] | |
tmp_5pts = tmp_5pts * scale_factor | |
# size_diff = tmp_crop_size * (scale_factor - min(scale_factor)) | |
# tmp_5pts = tmp_5pts + size_diff / 2 | |
tmp_crop_size = size_bf_outer_pad | |
# 3) add outer_padding to make output_size | |
reference_5point = tmp_5pts + np.array(outer_padding) | |
tmp_crop_size = output_size | |
return reference_5point | |
def get_affine_transform_matrix(src_pts, dst_pts): | |
""" | |
Function: | |
---------- | |
get affine transform matrix 'tfm' from src_pts to dst_pts | |
Parameters: | |
---------- | |
@src_pts: Kx2 np.array | |
source points matrix, each row is a pair of coordinates (x, y) | |
@dst_pts: Kx2 np.array | |
destination points matrix, each row is a pair of coordinates (x, y) | |
Returns: | |
---------- | |
@tfm: 2x3 np.array | |
transform matrix from src_pts to dst_pts | |
""" | |
tfm = np.float32([[1, 0, 0], [0, 1, 0]]) | |
n_pts = src_pts.shape[0] | |
ones = np.ones((n_pts, 1), src_pts.dtype) | |
src_pts_ = np.hstack([src_pts, ones]) | |
dst_pts_ = np.hstack([dst_pts, ones]) | |
A, res, rank, s = np.linalg.lstsq(src_pts_, dst_pts_) | |
if rank == 3: | |
tfm = np.float32([[A[0, 0], A[1, 0], A[2, 0]], [A[0, 1], A[1, 1], A[2, 1]]]) | |
elif rank == 2: | |
tfm = np.float32([[A[0, 0], A[1, 0], 0], [A[0, 1], A[1, 1], 0]]) | |
return tfm | |
def warp_and_crop_face(src_img, facial_pts, reference_pts=None, crop_size=(96, 112), align_type='smilarity'): | |
""" | |
Function: | |
---------- | |
apply affine transform 'trans' to uv | |
Parameters: | |
---------- | |
@src_img: 3x3 np.array | |
input image | |
@facial_pts: could be | |
1)a list of K coordinates (x,y) | |
or | |
2) Kx2 or 2xK np.array | |
each row or col is a pair of coordinates (x, y) | |
@reference_pts: could be | |
1) a list of K coordinates (x,y) | |
or | |
2) Kx2 or 2xK np.array | |
each row or col is a pair of coordinates (x, y) | |
or | |
3) None | |
if None, use default reference facial points | |
@crop_size: (w, h) | |
output face image size | |
@align_type: transform type, could be one of | |
1) 'similarity': use similarity transform | |
2) 'cv2_affine': use the first 3 points to do affine transform, | |
by calling cv2.getAffineTransform() | |
3) 'affine': use all points to do affine transform | |
Returns: | |
---------- | |
@face_img: output face image with size (w, h) = @crop_size | |
""" | |
if reference_pts is None: | |
if crop_size[0] == 96 and crop_size[1] == 112: | |
reference_pts = REFERENCE_FACIAL_POINTS | |
else: | |
default_square = False | |
inner_padding_factor = 0 | |
outer_padding = (0, 0) | |
output_size = crop_size | |
reference_pts = get_reference_facial_points(output_size, inner_padding_factor, outer_padding, | |
default_square) | |
ref_pts = np.float32(reference_pts) | |
ref_pts_shp = ref_pts.shape | |
if max(ref_pts_shp) < 3 or min(ref_pts_shp) != 2: | |
raise FaceWarpException('reference_pts.shape must be (K,2) or (2,K) and K>2') | |
if ref_pts_shp[0] == 2: | |
ref_pts = ref_pts.T | |
src_pts = np.float32(facial_pts) | |
src_pts_shp = src_pts.shape | |
if max(src_pts_shp) < 3 or min(src_pts_shp) != 2: | |
raise FaceWarpException('facial_pts.shape must be (K,2) or (2,K) and K>2') | |
if src_pts_shp[0] == 2: | |
src_pts = src_pts.T | |
if src_pts.shape != ref_pts.shape: | |
raise FaceWarpException('facial_pts and reference_pts must have the same shape') | |
if align_type == 'cv2_affine': | |
tfm = cv2.getAffineTransform(src_pts[0:3], ref_pts[0:3]) | |
elif align_type == 'affine': | |
tfm = get_affine_transform_matrix(src_pts, ref_pts) | |
else: | |
tfm = get_similarity_transform_for_cv2(src_pts, ref_pts) | |
face_img = cv2.warpAffine(src_img, tfm, (crop_size[0], crop_size[1])) | |
return face_img | |