Spaces:
Sleeping
Sleeping
import math | |
import torch | |
from torch import nn as nn | |
from torch.nn import functional as F | |
from basicsr.utils.registry import ARCH_REGISTRY | |
from .arch_util import flow_warp | |
class BasicModule(nn.Module): | |
"""Basic Module for SpyNet. | |
""" | |
def __init__(self): | |
super(BasicModule, self).__init__() | |
self.basic_module = nn.Sequential( | |
nn.Conv2d(in_channels=8, out_channels=32, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=False), | |
nn.Conv2d(in_channels=32, out_channels=64, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=False), | |
nn.Conv2d(in_channels=64, out_channels=32, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=False), | |
nn.Conv2d(in_channels=32, out_channels=16, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=False), | |
nn.Conv2d(in_channels=16, out_channels=2, kernel_size=7, stride=1, padding=3)) | |
def forward(self, tensor_input): | |
return self.basic_module(tensor_input) | |
class SpyNet(nn.Module): | |
"""SpyNet architecture. | |
Args: | |
load_path (str): path for pretrained SpyNet. Default: None. | |
""" | |
def __init__(self, load_path=None): | |
super(SpyNet, self).__init__() | |
self.basic_module = nn.ModuleList([BasicModule() for _ in range(6)]) | |
if load_path: | |
self.load_state_dict(torch.load(load_path, map_location=lambda storage, loc: storage)['params']) | |
self.register_buffer('mean', torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1)) | |
self.register_buffer('std', torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1)) | |
def preprocess(self, tensor_input): | |
tensor_output = (tensor_input - self.mean) / self.std | |
return tensor_output | |
def process(self, ref, supp): | |
flow = [] | |
ref = [self.preprocess(ref)] | |
supp = [self.preprocess(supp)] | |
for level in range(5): | |
ref.insert(0, F.avg_pool2d(input=ref[0], kernel_size=2, stride=2, count_include_pad=False)) | |
supp.insert(0, F.avg_pool2d(input=supp[0], kernel_size=2, stride=2, count_include_pad=False)) | |
flow = ref[0].new_zeros( | |
[ref[0].size(0), 2, | |
int(math.floor(ref[0].size(2) / 2.0)), | |
int(math.floor(ref[0].size(3) / 2.0))]) | |
for level in range(len(ref)): | |
upsampled_flow = F.interpolate(input=flow, scale_factor=2, mode='bilinear', align_corners=True) * 2.0 | |
if upsampled_flow.size(2) != ref[level].size(2): | |
upsampled_flow = F.pad(input=upsampled_flow, pad=[0, 0, 0, 1], mode='replicate') | |
if upsampled_flow.size(3) != ref[level].size(3): | |
upsampled_flow = F.pad(input=upsampled_flow, pad=[0, 1, 0, 0], mode='replicate') | |
flow = self.basic_module[level](torch.cat([ | |
ref[level], | |
flow_warp( | |
supp[level], upsampled_flow.permute(0, 2, 3, 1), interp_mode='bilinear', padding_mode='border'), | |
upsampled_flow | |
], 1)) + upsampled_flow | |
return flow | |
def forward(self, ref, supp): | |
assert ref.size() == supp.size() | |
h, w = ref.size(2), ref.size(3) | |
w_floor = math.floor(math.ceil(w / 32.0) * 32.0) | |
h_floor = math.floor(math.ceil(h / 32.0) * 32.0) | |
ref = F.interpolate(input=ref, size=(h_floor, w_floor), mode='bilinear', align_corners=False) | |
supp = F.interpolate(input=supp, size=(h_floor, w_floor), mode='bilinear', align_corners=False) | |
flow = F.interpolate(input=self.process(ref, supp), size=(h, w), mode='bilinear', align_corners=False) | |
flow[:, 0, :, :] *= float(w) / float(w_floor) | |
flow[:, 1, :, :] *= float(h) / float(h_floor) | |
return flow | |