DifFace / utils /util_image.py
Zongsheng
first upload
06f26d7
raw
history blame
26.5 kB
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Power by Zongsheng Yue 2021-11-24 16:54:19
import sys
import cv2
import math
import torch
import random
import numpy as np
from scipy import fft
from pathlib import Path
from einops import rearrange
from torchvision.utils import make_grid
from skimage import img_as_ubyte, img_as_float32
# --------------------------Metrics----------------------------
def ssim(img1, img2):
C1 = (0.01 * 255)**2
C2 = (0.03 * 255)**2
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
kernel = cv2.getGaussianKernel(11, 1.5)
window = np.outer(kernel, kernel.transpose())
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
mu1_sq = mu1**2
mu2_sq = mu2**2
mu1_mu2 = mu1 * mu2
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
(sigma1_sq + sigma2_sq + C2))
return ssim_map.mean()
def calculate_ssim(im1, im2, border=0, ycbcr=False):
'''
SSIM the same outputs as MATLAB's
im1, im2: h x w x , [0, 255], uint8
'''
if not im1.shape == im2.shape:
raise ValueError('Input images must have the same dimensions.')
if ycbcr:
im1 = rgb2ycbcr(im1, True)
im2 = rgb2ycbcr(im2, True)
h, w = im1.shape[:2]
im1 = im1[border:h-border, border:w-border]
im2 = im2[border:h-border, border:w-border]
if im1.ndim == 2:
return ssim(im1, im2)
elif im1.ndim == 3:
if im1.shape[2] == 3:
ssims = []
for i in range(3):
ssims.append(ssim(im1[:,:,i], im2[:,:,i]))
return np.array(ssims).mean()
elif im1.shape[2] == 1:
return ssim(np.squeeze(im1), np.squeeze(im2))
else:
raise ValueError('Wrong input image dimensions.')
def calculate_psnr(im1, im2, border=0, ycbcr=False):
'''
PSNR metric.
im1, im2: h x w x , [0, 255], uint8
'''
if not im1.shape == im2.shape:
raise ValueError('Input images must have the same dimensions.')
if ycbcr:
im1 = rgb2ycbcr(im1, True)
im2 = rgb2ycbcr(im2, True)
h, w = im1.shape[:2]
im1 = im1[border:h-border, border:w-border]
im2 = im2[border:h-border, border:w-border]
im1 = im1.astype(np.float64)
im2 = im2.astype(np.float64)
mse = np.mean((im1 - im2)**2)
if mse == 0:
return float('inf')
return 20 * math.log10(255.0 / math.sqrt(mse))
def batch_PSNR(img, imclean, border=0, ycbcr=False):
if ycbcr:
img = rgb2ycbcrTorch(img, True)
imclean = rgb2ycbcrTorch(imclean, True)
Img = img.data.cpu().numpy()
Iclean = imclean.data.cpu().numpy()
Img = img_as_ubyte(Img)
Iclean = img_as_ubyte(Iclean)
PSNR = 0
h, w = Iclean.shape[2:]
for i in range(Img.shape[0]):
PSNR += calculate_psnr(Iclean[i,:,].transpose((1,2,0)), Img[i,:,].transpose((1,2,0)), border)
return PSNR
def batch_SSIM(img, imclean, border=0, ycbcr=False):
if ycbcr:
img = rgb2ycbcrTorch(img, True)
imclean = rgb2ycbcrTorch(imclean, True)
Img = img.data.cpu().numpy()
Iclean = imclean.data.cpu().numpy()
Img = img_as_ubyte(Img)
Iclean = img_as_ubyte(Iclean)
SSIM = 0
for i in range(Img.shape[0]):
SSIM += calculate_ssim(Iclean[i,:,].transpose((1,2,0)), Img[i,:,].transpose((1,2,0)), border)
return SSIM
def normalize_np(im, mean=0.5, std=0.5, reverse=False):
'''
Input:
im: h x w x c, numpy array
Normalize: (im - mean) / std
Reverse: im * std + mean
'''
if not isinstance(mean, (list, tuple)):
mean = [mean, ] * im.shape[2]
mean = np.array(mean).reshape([1, 1, im.shape[2]])
if not isinstance(std, (list, tuple)):
std = [std, ] * im.shape[2]
std = np.array(std).reshape([1, 1, im.shape[2]])
if not reverse:
out = (im.astype(np.float32) - mean) / std
else:
out = im.astype(np.float32) * std + mean
return out
def normalize_th(im, mean=0.5, std=0.5, reverse=False):
'''
Input:
im: b x c x h x w, torch tensor
Normalize: (im - mean) / std
Reverse: im * std + mean
'''
if not isinstance(mean, (list, tuple)):
mean = [mean, ] * im.shape[1]
mean = torch.tensor(mean, device=im.device).view([1, im.shape[1], 1, 1])
if not isinstance(std, (list, tuple)):
std = [std, ] * im.shape[1]
std = torch.tensor(std, device=im.device).view([1, im.shape[1], 1, 1])
if not reverse:
out = (im - mean) / std
else:
out = im * std + mean
return out
# ------------------------Image format--------------------------
def rgb2ycbcr(im, only_y=True):
'''
same as matlab rgb2ycbcr
Input:
im: uint8 [0,255] or float [0,1]
only_y: only return Y channel
'''
# transform to float64 data type, range [0, 255]
if im.dtype == np.uint8:
im_temp = im.astype(np.float64)
else:
im_temp = (im * 255).astype(np.float64)
# convert
if only_y:
rlt = np.dot(im_temp, np.array([65.481, 128.553, 24.966])/ 255.0) + 16.0
else:
rlt = np.matmul(im_temp, np.array([[65.481, -37.797, 112.0 ],
[128.553, -74.203, -93.786],
[24.966, 112.0, -18.214]])/255.0) + [16, 128, 128]
if im.dtype == np.uint8:
rlt = rlt.round()
else:
rlt /= 255.
return rlt.astype(im.dtype)
def rgb2ycbcrTorch(im, only_y=True):
'''
same as matlab rgb2ycbcr
Input:
im: float [0,1], N x 3 x H x W
only_y: only return Y channel
'''
# transform to range [0,255.0]
im_temp = im.permute([0,2,3,1]) * 255.0 # N x H x W x C --> N x H x W x C
# convert
if only_y:
rlt = torch.matmul(im_temp, torch.tensor([65.481, 128.553, 24.966],
device=im.device, dtype=im.dtype).view([3,1])/ 255.0) + 16.0
else:
rlt = torch.matmul(im_temp, torch.tensor([[65.481, -37.797, 112.0 ],
[128.553, -74.203, -93.786],
[24.966, 112.0, -18.214]],
device=im.device, dtype=im.dtype)/255.0) + \
torch.tensor([16, 128, 128]).view([-1, 1, 1, 3])
rlt /= 255.0
rlt.clamp_(0.0, 1.0)
return rlt.permute([0, 3, 1, 2])
def bgr2rgb(im): return cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
def rgb2bgr(im): return cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)):
"""Convert torch Tensors into image numpy arrays.
After clamping to [min, max], values will be normalized to [0, 1].
Args:
tensor (Tensor or list[Tensor]): Accept shapes:
1) 4D mini-batch Tensor of shape (B x 3/1 x H x W);
2) 3D Tensor of shape (3/1 x H x W);
3) 2D Tensor of shape (H x W).
Tensor channel should be in RGB order.
rgb2bgr (bool): Whether to change rgb to bgr.
out_type (numpy type): output types. If ``np.uint8``, transform outputs
to uint8 type with range [0, 255]; otherwise, float type with
range [0, 1]. Default: ``np.uint8``.
min_max (tuple[int]): min and max values for clamp.
Returns:
(Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of
shape (H x W). The channel order is BGR.
"""
if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))):
raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}')
flag_tensor = torch.is_tensor(tensor)
if flag_tensor:
tensor = [tensor]
result = []
for _tensor in tensor:
_tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max)
_tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0])
n_dim = _tensor.dim()
if n_dim == 4:
img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy()
img_np = img_np.transpose(1, 2, 0)
if rgb2bgr:
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
elif n_dim == 3:
img_np = _tensor.numpy()
img_np = img_np.transpose(1, 2, 0)
if img_np.shape[2] == 1: # gray image
img_np = np.squeeze(img_np, axis=2)
else:
if rgb2bgr:
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
elif n_dim == 2:
img_np = _tensor.numpy()
else:
raise TypeError(f'Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}')
if out_type == np.uint8:
# Unlike MATLAB, numpy.unit8() WILL NOT round by default.
img_np = (img_np * 255.0).round()
img_np = img_np.astype(out_type)
result.append(img_np)
if len(result) == 1 and flag_tensor:
result = result[0]
return result
def img2tensor(imgs, out_type=torch.float32):
"""Convert image numpy arrays into torch tensor.
After clamping to [min, max], values will be normalized to [0, 1].
Args:
imgs (Array or list[array]): Accept shapes:
3) list of numpy arrays
1) 3D numpy array of shape (H x W x 3/1);
2) 2D Tensor of shape (H x W).
Tensor channel should be in RGB order.
Returns:
(array or list): 3D ndarray of shape (H x W x C) or 2D ndarray of shape (H x W).
"""
def _img2tensor(img):
if img.ndim == 2:
tensor = torch.from_numpy(img[None, None,]).type(out_type)
elif img.ndim == 3:
tensor = torch.from_numpy(rearrange(img, 'h w c -> c h w')).type(out_type).unsqueeze(0)
else:
raise TypeError(f'2D or 3D numpy array expected, got{img.ndim}D array')
return tensor
if not (isinstance(imgs, np.ndarray) or (isinstance(imgs, list) and all(isinstance(t, np.ndarray) for t in imgs))):
raise TypeError(f'Numpy array or list of numpy array expected, got {type(imgs)}')
if isinstance(imgs, np.ndarray):
imgs = [imgs,]
result = []
for _img in imgs:
result.append(_img2tensor(_img))
if len(result) == 1 and isinstance(imgs, np.ndarray):
result = result[0]
return result
# ------------------------Image I/O-----------------------------
def imread(path, chn='rgb', dtype='float32'):
'''
Read image.
chn: 'rgb', 'bgr' or 'gray'
out:
im: h x w x c, numpy tensor
'''
im = cv2.imread(str(path), cv2.IMREAD_UNCHANGED) # BGR, uint8
if chn.lower() == 'rgb':
if im.ndim == 3:
im = bgr2rgb(im)
else:
im = np.stack((im, im, im), axis=2)
elif chn.lower() == 'gray':
assert im.ndim == 2
if dtype == 'float32':
im = im.astype(np.float32) / 255.
elif dtype == 'float64':
im = im.astype(np.float64) / 255.
elif dtype == 'uint8':
pass
else:
sys.exit('Please input corrected dtype: float32, float64 or uint8!')
if im.shape[2] > 3:
im = im[:, :, :3]
return im
def imwrite(im_in, path, chn='rgb', dtype_in='float32', qf=None):
'''
Save image.
Input:
im: h x w x c, numpy tensor
path: the saving path
chn: the channel order of the im,
'''
im = im_in.copy()
if isinstance(path, str):
path = Path(path)
if dtype_in != 'uint8':
im = img_as_ubyte(im)
if chn.lower() == 'rgb' and im.ndim == 3:
im = rgb2bgr(im)
if qf is not None and path.suffix.lower() in ['.jpg', '.jpeg']:
flag = cv2.imwrite(str(path), im, [int(cv2.IMWRITE_JPEG_QUALITY), int(qf)])
else:
flag = cv2.imwrite(str(path), im)
return flag
def jpeg_compress(im, qf, chn_in='rgb'):
'''
Input:
im: h x w x 3 array
qf: compress factor, (0, 100]
chn_in: 'rgb' or 'bgr'
Return:
Compressed Image with channel order: chn_in
'''
# transform to BGR channle and uint8 data type
im_bgr = rgb2bgr(im) if chn_in.lower() == 'rgb' else im
if im.dtype != np.dtype('uint8'): im_bgr = img_as_ubyte(im_bgr)
# JPEG compress
flag, encimg = cv2.imencode('.jpg', im_bgr, [int(cv2.IMWRITE_JPEG_QUALITY), qf])
assert flag
im_jpg_bgr = cv2.imdecode(encimg, 1) # uint8, BGR
# transform back to original channel and the original data type
im_out = bgr2rgb(im_jpg_bgr) if chn_in.lower() == 'rgb' else im_jpg_bgr
if im.dtype != np.dtype('uint8'): im_out = img_as_float32(im_out).astype(im.dtype)
return im_out
# ------------------------Augmentation-----------------------------
def data_aug_np(image, mode):
'''
Performs data augmentation of the input image
Input:
image: a cv2 (OpenCV) image
mode: int. Choice of transformation to apply to the image
0 - no transformation
1 - flip up and down
2 - rotate counterwise 90 degree
3 - rotate 90 degree and flip up and down
4 - rotate 180 degree
5 - rotate 180 degree and flip
6 - rotate 270 degree
7 - rotate 270 degree and flip
'''
if mode == 0:
# original
out = image
elif mode == 1:
# flip up and down
out = np.flipud(image)
elif mode == 2:
# rotate counterwise 90 degree
out = np.rot90(image)
elif mode == 3:
# rotate 90 degree and flip up and down
out = np.rot90(image)
out = np.flipud(out)
elif mode == 4:
# rotate 180 degree
out = np.rot90(image, k=2)
elif mode == 5:
# rotate 180 degree and flip
out = np.rot90(image, k=2)
out = np.flipud(out)
elif mode == 6:
# rotate 270 degree
out = np.rot90(image, k=3)
elif mode == 7:
# rotate 270 degree and flip
out = np.rot90(image, k=3)
out = np.flipud(out)
else:
raise Exception('Invalid choice of image transformation')
return out.copy()
def inverse_data_aug_np(image, mode):
'''
Performs inverse data augmentation of the input image
'''
if mode == 0:
# original
out = image
elif mode == 1:
out = np.flipud(image)
elif mode == 2:
out = np.rot90(image, axes=(1,0))
elif mode == 3:
out = np.flipud(image)
out = np.rot90(out, axes=(1,0))
elif mode == 4:
out = np.rot90(image, k=2, axes=(1,0))
elif mode == 5:
out = np.flipud(image)
out = np.rot90(out, k=2, axes=(1,0))
elif mode == 6:
out = np.rot90(image, k=3, axes=(1,0))
elif mode == 7:
# rotate 270 degree and flip
out = np.flipud(image)
out = np.rot90(out, k=3, axes=(1,0))
else:
raise Exception('Invalid choice of image transformation')
return out
class SpatialAug:
def __init__(self):
pass
def __call__(self, im, flag=None):
if flag is None:
flag = random.randint(0, 7)
out = data_aug_np(im, flag)
return out
# ----------------------Visualization----------------------------
def imshow(x, title=None, cbar=False):
import matplotlib.pyplot as plt
plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray')
if title:
plt.title(title)
if cbar:
plt.colorbar()
plt.show()
# -----------------------Covolution------------------------------
def imgrad(im, pading_mode='mirror'):
'''
Calculate image gradient.
Input:
im: h x w x c numpy array
'''
from scipy.ndimage import correlate # lazy import
wx = np.array([[0, 0, 0],
[-1, 1, 0],
[0, 0, 0]], dtype=np.float32)
wy = np.array([[0, -1, 0],
[0, 1, 0],
[0, 0, 0]], dtype=np.float32)
if im.ndim == 3:
gradx = np.stack(
[correlate(im[:,:,c], wx, mode=pading_mode) for c in range(im.shape[2])],
axis=2
)
grady = np.stack(
[correlate(im[:,:,c], wy, mode=pading_mode) for c in range(im.shape[2])],
axis=2
)
grad = np.concatenate((gradx, grady), axis=2)
else:
gradx = correlate(im, wx, mode=pading_mode)
grady = correlate(im, wy, mode=pading_mode)
grad = np.stack((gradx, grady), axis=2)
return {'gradx': gradx, 'grady': grady, 'grad':grad}
def imgrad_fft(im):
'''
Calculate image gradient.
Input:
im: h x w x c numpy array
'''
wx = np.rot90(np.array([[0, 0, 0],
[-1, 1, 0],
[0, 0, 0]], dtype=np.float32), k=2)
gradx = convfft(im, wx)
wy = np.rot90(np.array([[0, -1, 0],
[0, 1, 0],
[0, 0, 0]], dtype=np.float32), k=2)
grady = convfft(im, wy)
grad = np.concatenate((gradx, grady), axis=2)
return {'gradx': gradx, 'grady': grady, 'grad':grad}
def convfft(im, weight):
'''
Convolution with FFT
Input:
im: h1 x w1 x c numpy array
weight: h2 x w2 numpy array
Output:
out: h1 x w1 x c numpy array
'''
axes = (0,1)
otf = psf2otf(weight, im.shape[:2])
if im.ndim == 3:
otf = np.tile(otf[:, :, None], (1,1,im.shape[2]))
out = fft.ifft2(fft.fft2(im, axes=axes) * otf, axes=axes).real
return out
def psf2otf(psf, shape):
"""
MATLAB psf2otf function.
Borrowed from https://github.com/aboucaud/pypher/blob/master/pypher/pypher.py.
Input:
psf : h x w numpy array
shape : list or tuple, output shape of the OTF array
Output:
otf : OTF array with the desirable shape
"""
if np.all(psf == 0):
return np.zeros_like(psf)
inshape = psf.shape
# Pad the PSF to outsize
psf = zero_pad(psf, shape, position='corner')
# Circularly shift OTF so that the 'center' of the PSF is [0,0] element of the array
for axis, axis_size in enumerate(inshape):
psf = np.roll(psf, -int(axis_size / 2), axis=axis)
# Compute the OTF
otf = fft.fft2(psf)
# Estimate the rough number of operations involved in the FFT
# and discard the PSF imaginary part if within roundoff error
# roundoff error = machine epsilon = sys.float_info.epsilon
# or np.finfo().eps
n_ops = np.sum(psf.size * np.log2(psf.shape))
otf = np.real_if_close(otf, tol=n_ops)
return otf
def zero_pad(image, shape, position='corner'):
"""
Extends image to a certain size with zeros
Input:
image: real 2d numpy array
shape: tuple of int, desired output shape of the image
position : str, 'corner' or 'center',
The position of the input image in the output one:
* 'corner'
top-left corner (default)
* 'center'
centered
Output
padded_img: real numpy array
"""
shape = np.asarray(shape, dtype=int)
imshape = np.asarray(image.shape, dtype=int)
if np.alltrue(imshape == shape):
return image
if np.any(shape <= 0):
raise ValueError("ZERO_PAD: null or negative shape given")
dshape = shape - imshape
if np.any(dshape < 0):
raise ValueError("ZERO_PAD: target size smaller than source one")
pad_img = np.zeros(shape, dtype=image.dtype)
idx, idy = np.indices(imshape)
if position == 'center':
if np.any(dshape % 2 != 0):
raise ValueError("ZERO_PAD: source and target shapes have different parity.")
offx, offy = dshape // 2
else:
offx, offy = (0, 0)
pad_img[idx + offx, idy + offy] = image
return pad_img
# ----------------------Patch Cropping----------------------------
def random_crop(im, pch_size):
'''
Randomly crop a patch from the give image.
'''
h, w = im.shape[:2]
assert h > pch_size and w > pch_size
ind_h = random.randint(0, h-pch_size)
ind_w = random.randint(0, w-pch_size)
im_pch = im[ind_h:ind_h+pch_size, ind_w:ind_w+pch_size,]
return im_pch
class RandomCrop:
def __init__(self, pch_size):
self.pch_size = pch_size
def __call__(self, im):
return random_crop(im, self.pch_size)
class ImageSpliterNp:
def __init__(self, im, pch_size, stride, sf=1):
'''
Input:
im: h x w x c, numpy array, [0, 1], low-resolution image in SR
pch_size, stride: patch setting
sf: scale factor in image super-resolution
'''
assert stride <= pch_size
self.stride = stride
self.pch_size = pch_size
self.sf = sf
if im.ndim == 2:
im = im[:, :, None]
height, width, chn = im.shape
self.height_starts_list = self.extract_starts(height)
self.width_starts_list = self.extract_starts(width)
self.length = self.__len__()
self.num_pchs = 0
self.im_ori = im
self.im_res = np.zeros([height*sf, width*sf, chn], dtype=im.dtype)
self.pixel_count = np.zeros([height*sf, width*sf, chn], dtype=im.dtype)
def extract_starts(self, length):
starts = list(range(0, length, self.stride))
if starts[-1] + self.pch_size > length:
starts[-1] = length - self.pch_size
return starts
def __len__(self):
return len(self.height_starts_list) * len(self.width_starts_list)
def __iter__(self):
return self
def __next__(self):
if self.num_pchs < self.length:
w_start_idx = self.num_pchs // len(self.height_starts_list)
w_start = self.width_starts_list[w_start_idx] * self.sf
w_end = w_start + self.pch_size * self.sf
h_start_idx = self.num_pchs % len(self.height_starts_list)
h_start = self.height_starts_list[h_start_idx] * self.sf
h_end = h_start + self.pch_size * self.sf
pch = self.im_ori[h_start:h_end, w_start:w_end,]
self.w_start, self.w_end = w_start, w_end
self.h_start, self.h_end = h_start, h_end
self.num_pchs += 1
else:
raise StopIteration(0)
return pch, (h_start, h_end, w_start, w_end)
def update(self, pch_res, index_infos):
'''
Input:
pch_res: pch_size x pch_size x 3, [0,1]
index_infos: (h_start, h_end, w_start, w_end)
'''
if index_infos is None:
w_start, w_end = self.w_start, self.w_end
h_start, h_end = self.h_start, self.h_end
else:
h_start, h_end, w_start, w_end = index_infos
self.im_res[h_start:h_end, w_start:w_end] += pch_res
self.pixel_count[h_start:h_end, w_start:w_end] += 1
def gather(self):
assert np.all(self.pixel_count != 0)
return self.im_res / self.pixel_count
class ImageSpliterTh:
def __init__(self, im, pch_size, stride, sf=1):
'''
Input:
im: n x c x h x w, torch tensor, float, low-resolution image in SR
pch_size, stride: patch setting
sf: scale factor in image super-resolution
'''
assert stride <= pch_size
self.stride = stride
self.pch_size = pch_size
self.sf = sf
bs, chn, height, width= im.shape
self.height_starts_list = self.extract_starts(height)
self.width_starts_list = self.extract_starts(width)
self.length = self.__len__()
self.num_pchs = 0
self.im_ori = im
self.im_res = torch.zeros([bs, chn, height*sf, width*sf], dtype=im.dtype, device=im.device)
self.pixel_count = torch.zeros([bs, chn, height*sf, width*sf], dtype=im.dtype, device=im.device)
def extract_starts(self, length):
starts = list(range(0, length, self.stride))
if starts[-1] + self.pch_size > length:
starts[-1] = length - self.pch_size
return starts
def __len__(self):
return len(self.height_starts_list) * len(self.width_starts_list)
def __iter__(self):
return self
def __next__(self):
if self.num_pchs < self.length:
w_start_idx = self.num_pchs // len(self.height_starts_list)
w_start = self.width_starts_list[w_start_idx] * self.sf
w_end = w_start + self.pch_size * self.sf
h_start_idx = self.num_pchs % len(self.height_starts_list)
h_start = self.height_starts_list[h_start_idx] * self.sf
h_end = h_start + self.pch_size * self.sf
pch = self.im_ori[:, :, h_start:h_end, w_start:w_end,]
self.w_start, self.w_end = w_start, w_end
self.h_start, self.h_end = h_start, h_end
self.num_pchs += 1
else:
raise StopIteration()
return pch, (h_start, h_end, w_start, w_end)
def update(self, pch_res, index_infos):
'''
Input:
pch_res: n x c x pch_size x pch_size, float
index_infos: (h_start, h_end, w_start, w_end)
'''
if index_infos is None:
w_start, w_end = self.w_start, self.w_end
h_start, h_end = self.h_start, self.h_end
else:
h_start, h_end, w_start, w_end = index_infos
self.im_res[:, :, h_start:h_end, w_start:w_end] += pch_res
self.pixel_count[:, :, h_start:h_end, w_start:w_end] += 1
def gather(self):
assert torch.all(self.pixel_count != 0)
return self.im_res.div(self.pixel_count)
if __name__ == '__main__':
im = np.random.randn(64, 64, 3).astype(np.float32)
grad1 = imgrad(im)['grad']
grad2 = imgrad_fft(im)['grad']
error = np.abs(grad1 -grad2).max()
mean_error = np.abs(grad1 -grad2).mean()
print('The largest error is {:.2e}'.format(error))
print('The mean error is {:.2e}'.format(mean_error))