DifFace / basicsr /archs /tof_arch.py
Zongsheng
first upload
06f26d7
raw
history blame
6.16 kB
import torch
from torch import nn as nn
from torch.nn import functional as F
from basicsr.utils.registry import ARCH_REGISTRY
from .arch_util import flow_warp
class BasicModule(nn.Module):
"""Basic module of SPyNet.
Note that unlike the architecture in spynet_arch.py, the basic module
here contains batch normalization.
"""
def __init__(self):
super(BasicModule, self).__init__()
self.basic_module = nn.Sequential(
nn.Conv2d(in_channels=8, out_channels=32, kernel_size=7, stride=1, padding=3, bias=False),
nn.BatchNorm2d(32), nn.ReLU(inplace=True),
nn.Conv2d(in_channels=32, out_channels=64, kernel_size=7, stride=1, padding=3, bias=False),
nn.BatchNorm2d(64), nn.ReLU(inplace=True),
nn.Conv2d(in_channels=64, out_channels=32, kernel_size=7, stride=1, padding=3, bias=False),
nn.BatchNorm2d(32), nn.ReLU(inplace=True),
nn.Conv2d(in_channels=32, out_channels=16, kernel_size=7, stride=1, padding=3, bias=False),
nn.BatchNorm2d(16), nn.ReLU(inplace=True),
nn.Conv2d(in_channels=16, out_channels=2, kernel_size=7, stride=1, padding=3))
def forward(self, tensor_input):
"""
Args:
tensor_input (Tensor): Input tensor with shape (b, 8, h, w).
8 channels contain:
[reference image (3), neighbor image (3), initial flow (2)].
Returns:
Tensor: Estimated flow with shape (b, 2, h, w)
"""
return self.basic_module(tensor_input)
class SPyNetTOF(nn.Module):
"""SPyNet architecture for TOF.
Note that this implementation is specifically for TOFlow. Please use :file:`spynet_arch.py` for general use.
They differ in the following aspects:
1. The basic modules here contain BatchNorm.
2. Normalization and denormalization are not done here, as they are done in TOFlow.
``Paper: Optical Flow Estimation using a Spatial Pyramid Network``
Reference: https://github.com/Coldog2333/pytoflow
Args:
load_path (str): Path for pretrained SPyNet. Default: None.
"""
def __init__(self, load_path=None):
super(SPyNetTOF, self).__init__()
self.basic_module = nn.ModuleList([BasicModule() for _ in range(4)])
if load_path:
self.load_state_dict(torch.load(load_path, map_location=lambda storage, loc: storage)['params'])
def forward(self, ref, supp):
"""
Args:
ref (Tensor): Reference image with shape of (b, 3, h, w).
supp: The supporting image to be warped: (b, 3, h, w).
Returns:
Tensor: Estimated optical flow: (b, 2, h, w).
"""
num_batches, _, h, w = ref.size()
ref = [ref]
supp = [supp]
# generate downsampled frames
for _ in range(3):
ref.insert(0, F.avg_pool2d(input=ref[0], kernel_size=2, stride=2, count_include_pad=False))
supp.insert(0, F.avg_pool2d(input=supp[0], kernel_size=2, stride=2, count_include_pad=False))
# flow computation
flow = ref[0].new_zeros(num_batches, 2, h // 16, w // 16)
for i in range(4):
flow_up = F.interpolate(input=flow, scale_factor=2, mode='bilinear', align_corners=True) * 2.0
flow = flow_up + self.basic_module[i](
torch.cat([ref[i], flow_warp(supp[i], flow_up.permute(0, 2, 3, 1)), flow_up], 1))
return flow
@ARCH_REGISTRY.register()
class TOFlow(nn.Module):
"""PyTorch implementation of TOFlow.
In TOFlow, the LR frames are pre-upsampled and have the same size with the GT frames.
``Paper: Video Enhancement with Task-Oriented Flow``
Reference: https://github.com/anchen1011/toflow
Reference: https://github.com/Coldog2333/pytoflow
Args:
adapt_official_weights (bool): Whether to adapt the weights translated
from the official implementation. Set to false if you want to
train from scratch. Default: False
"""
def __init__(self, adapt_official_weights=False):
super(TOFlow, self).__init__()
self.adapt_official_weights = adapt_official_weights
self.ref_idx = 0 if adapt_official_weights else 3
self.register_buffer('mean', torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1))
self.register_buffer('std', torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1))
# flow estimation module
self.spynet = SPyNetTOF()
# reconstruction module
self.conv_1 = nn.Conv2d(3 * 7, 64, 9, 1, 4)
self.conv_2 = nn.Conv2d(64, 64, 9, 1, 4)
self.conv_3 = nn.Conv2d(64, 64, 1)
self.conv_4 = nn.Conv2d(64, 3, 1)
# activation function
self.relu = nn.ReLU(inplace=True)
def normalize(self, img):
return (img - self.mean) / self.std
def denormalize(self, img):
return img * self.std + self.mean
def forward(self, lrs):
"""
Args:
lrs: Input lr frames: (b, 7, 3, h, w).
Returns:
Tensor: SR frame: (b, 3, h, w).
"""
# In the official implementation, the 0-th frame is the reference frame
if self.adapt_official_weights:
lrs = lrs[:, [3, 0, 1, 2, 4, 5, 6], :, :, :]
num_batches, num_lrs, _, h, w = lrs.size()
lrs = self.normalize(lrs.view(-1, 3, h, w))
lrs = lrs.view(num_batches, num_lrs, 3, h, w)
lr_ref = lrs[:, self.ref_idx, :, :, :]
lr_aligned = []
for i in range(7): # 7 frames
if i == self.ref_idx:
lr_aligned.append(lr_ref)
else:
lr_supp = lrs[:, i, :, :, :]
flow = self.spynet(lr_ref, lr_supp)
lr_aligned.append(flow_warp(lr_supp, flow.permute(0, 2, 3, 1)))
# reconstruction
hr = torch.stack(lr_aligned, dim=1)
hr = hr.view(num_batches, -1, h, w)
hr = self.relu(self.conv_1(hr))
hr = self.relu(self.conv_2(hr))
hr = self.relu(self.conv_3(hr))
hr = self.conv_4(hr) + lr_ref
return self.denormalize(hr)