Spaces:
Running
on
T4
Running
on
T4
import torch | |
from torch.nn import functional as F | |
from basicsr.utils.registry import MODEL_REGISTRY | |
from .sr_model import SRModel | |
class SwinIRModel(SRModel): | |
def test(self): | |
# pad to multiplication of window_size | |
window_size = self.opt['network_g']['window_size'] | |
scale = self.opt.get('scale', 1) | |
mod_pad_h, mod_pad_w = 0, 0 | |
_, _, h, w = self.lq.size() | |
if h % window_size != 0: | |
mod_pad_h = window_size - h % window_size | |
if w % window_size != 0: | |
mod_pad_w = window_size - w % window_size | |
img = F.pad(self.lq, (0, mod_pad_w, 0, mod_pad_h), 'reflect') | |
if hasattr(self, 'net_g_ema'): | |
self.net_g_ema.eval() | |
with torch.no_grad(): | |
self.output = self.net_g_ema(img) | |
else: | |
self.net_g.eval() | |
with torch.no_grad(): | |
self.output = self.net_g(img) | |
self.net_g.train() | |
_, _, h, w = self.output.size() | |
self.output = self.output[:, :, 0:h - mod_pad_h * scale, 0:w - mod_pad_w * scale] | |