Spaces:
Sleeping
Sleeping
// modify from | |
// https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/blob/mmdetection/mmdet/ops/dcn/src/deform_conv_cuda.c | |
void deformable_im2col(const at::Tensor data_im, const at::Tensor data_offset, | |
const int channels, const int height, const int width, | |
const int ksize_h, const int ksize_w, const int pad_h, | |
const int pad_w, const int stride_h, const int stride_w, | |
const int dilation_h, const int dilation_w, | |
const int parallel_imgs, const int deformable_group, | |
at::Tensor data_col); | |
void deformable_col2im(const at::Tensor data_col, const at::Tensor data_offset, | |
const int channels, const int height, const int width, | |
const int ksize_h, const int ksize_w, const int pad_h, | |
const int pad_w, const int stride_h, const int stride_w, | |
const int dilation_h, const int dilation_w, | |
const int parallel_imgs, const int deformable_group, | |
at::Tensor grad_im); | |
void deformable_col2im_coord( | |
const at::Tensor data_col, const at::Tensor data_im, | |
const at::Tensor data_offset, const int channels, const int height, | |
const int width, const int ksize_h, const int ksize_w, const int pad_h, | |
const int pad_w, const int stride_h, const int stride_w, | |
const int dilation_h, const int dilation_w, const int parallel_imgs, | |
const int deformable_group, at::Tensor grad_offset); | |
void modulated_deformable_im2col_cuda( | |
const at::Tensor data_im, const at::Tensor data_offset, | |
const at::Tensor data_mask, const int batch_size, const int channels, | |
const int height_im, const int width_im, const int height_col, | |
const int width_col, const int kernel_h, const int kenerl_w, | |
const int pad_h, const int pad_w, const int stride_h, const int stride_w, | |
const int dilation_h, const int dilation_w, const int deformable_group, | |
at::Tensor data_col); | |
void modulated_deformable_col2im_cuda( | |
const at::Tensor data_col, const at::Tensor data_offset, | |
const at::Tensor data_mask, const int batch_size, const int channels, | |
const int height_im, const int width_im, const int height_col, | |
const int width_col, const int kernel_h, const int kenerl_w, | |
const int pad_h, const int pad_w, const int stride_h, const int stride_w, | |
const int dilation_h, const int dilation_w, const int deformable_group, | |
at::Tensor grad_im); | |
void modulated_deformable_col2im_coord_cuda( | |
const at::Tensor data_col, const at::Tensor data_im, | |
const at::Tensor data_offset, const at::Tensor data_mask, | |
const int batch_size, const int channels, const int height_im, | |
const int width_im, const int height_col, const int width_col, | |
const int kernel_h, const int kenerl_w, const int pad_h, const int pad_w, | |
const int stride_h, const int stride_w, const int dilation_h, | |
const int dilation_w, const int deformable_group, at::Tensor grad_offset, | |
at::Tensor grad_mask); | |
void shape_check(at::Tensor input, at::Tensor offset, at::Tensor *gradOutput, | |
at::Tensor weight, int kH, int kW, int dH, int dW, int padH, | |
int padW, int dilationH, int dilationW, int group, | |
int deformable_group) { | |
TORCH_CHECK(weight.ndimension() == 4, | |
"4D weight tensor (nOutputPlane,nInputPlane,kH,kW) expected, " | |
"but got: %s", | |
weight.ndimension()); | |
TORCH_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous"); | |
TORCH_CHECK(kW > 0 && kH > 0, | |
"kernel size should be greater than zero, but got kH: %d kW: %d", kH, | |
kW); | |
TORCH_CHECK((weight.size(2) == kH && weight.size(3) == kW), | |
"kernel size should be consistent with weight, ", | |
"but got kH: %d kW: %d weight.size(2): %d, weight.size(3): %d", kH, | |
kW, weight.size(2), weight.size(3)); | |
TORCH_CHECK(dW > 0 && dH > 0, | |
"stride should be greater than zero, but got dH: %d dW: %d", dH, dW); | |
TORCH_CHECK( | |
dilationW > 0 && dilationH > 0, | |
"dilation should be greater than 0, but got dilationH: %d dilationW: %d", | |
dilationH, dilationW); | |
int ndim = input.ndimension(); | |
int dimf = 0; | |
int dimh = 1; | |
int dimw = 2; | |
if (ndim == 4) { | |
dimf++; | |
dimh++; | |
dimw++; | |
} | |
TORCH_CHECK(ndim == 3 || ndim == 4, "3D or 4D input tensor expected but got: %s", | |
ndim); | |
long nInputPlane = weight.size(1) * group; | |
long inputHeight = input.size(dimh); | |
long inputWidth = input.size(dimw); | |
long nOutputPlane = weight.size(0); | |
long outputHeight = | |
(inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1; | |
long outputWidth = | |
(inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1; | |
TORCH_CHECK(nInputPlane % deformable_group == 0, | |
"input channels must divide deformable group size"); | |
if (outputWidth < 1 || outputHeight < 1) | |
AT_ERROR( | |
"Given input size: (%ld x %ld x %ld). " | |
"Calculated output size: (%ld x %ld x %ld). Output size is too small", | |
nInputPlane, inputHeight, inputWidth, nOutputPlane, outputHeight, | |
outputWidth); | |
TORCH_CHECK(input.size(1) == nInputPlane, | |
"invalid number of input planes, expected: %d, but got: %d", | |
nInputPlane, input.size(1)); | |
TORCH_CHECK((inputHeight >= kH && inputWidth >= kW), | |
"input image is smaller than kernel"); | |
TORCH_CHECK((offset.size(2) == outputHeight && offset.size(3) == outputWidth), | |
"invalid spatial size of offset, expected height: %d width: %d, but " | |
"got height: %d width: %d", | |
outputHeight, outputWidth, offset.size(2), offset.size(3)); | |
TORCH_CHECK((offset.size(1) == deformable_group * 2 * kH * kW), | |
"invalid number of channels of offset"); | |
if (gradOutput != NULL) { | |
TORCH_CHECK(gradOutput->size(dimf) == nOutputPlane, | |
"invalid number of gradOutput planes, expected: %d, but got: %d", | |
nOutputPlane, gradOutput->size(dimf)); | |
TORCH_CHECK((gradOutput->size(dimh) == outputHeight && | |
gradOutput->size(dimw) == outputWidth), | |
"invalid size of gradOutput, expected height: %d width: %d , but " | |
"got height: %d width: %d", | |
outputHeight, outputWidth, gradOutput->size(dimh), | |
gradOutput->size(dimw)); | |
} | |
} | |
int deform_conv_forward_cuda(at::Tensor input, at::Tensor weight, | |
at::Tensor offset, at::Tensor output, | |
at::Tensor columns, at::Tensor ones, int kW, | |
int kH, int dW, int dH, int padW, int padH, | |
int dilationW, int dilationH, int group, | |
int deformable_group, int im2col_step) { | |
// todo: resize columns to include im2col: done | |
// todo: add im2col_step as input | |
// todo: add new output buffer and transpose it to output (or directly | |
// transpose output) todo: possibly change data indexing because of | |
// parallel_imgs | |
shape_check(input, offset, NULL, weight, kH, kW, dH, dW, padH, padW, | |
dilationH, dilationW, group, deformable_group); | |
at::DeviceGuard guard(input.device()); | |
input = input.contiguous(); | |
offset = offset.contiguous(); | |
weight = weight.contiguous(); | |
int batch = 1; | |
if (input.ndimension() == 3) { | |
// Force batch | |
batch = 0; | |
input.unsqueeze_(0); | |
offset.unsqueeze_(0); | |
} | |
// todo: assert batchsize dividable by im2col_step | |
long batchSize = input.size(0); | |
long nInputPlane = input.size(1); | |
long inputHeight = input.size(2); | |
long inputWidth = input.size(3); | |
long nOutputPlane = weight.size(0); | |
long outputWidth = | |
(inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1; | |
long outputHeight = | |
(inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1; | |
TORCH_CHECK((offset.size(0) == batchSize), "invalid batch size of offset"); | |
output = output.view({batchSize / im2col_step, im2col_step, nOutputPlane, | |
outputHeight, outputWidth}); | |
columns = at::zeros( | |
{nInputPlane * kW * kH, im2col_step * outputHeight * outputWidth}, | |
input.options()); | |
if (ones.ndimension() != 2 || | |
ones.size(0) * ones.size(1) < outputHeight * outputWidth) { | |
ones = at::ones({outputHeight, outputWidth}, input.options()); | |
} | |
input = input.view({batchSize / im2col_step, im2col_step, nInputPlane, | |
inputHeight, inputWidth}); | |
offset = | |
offset.view({batchSize / im2col_step, im2col_step, | |
deformable_group * 2 * kH * kW, outputHeight, outputWidth}); | |
at::Tensor output_buffer = | |
at::zeros({batchSize / im2col_step, nOutputPlane, | |
im2col_step * outputHeight, outputWidth}, | |
output.options()); | |
output_buffer = output_buffer.view( | |
{output_buffer.size(0), group, output_buffer.size(1) / group, | |
output_buffer.size(2), output_buffer.size(3)}); | |
for (int elt = 0; elt < batchSize / im2col_step; elt++) { | |
deformable_im2col(input[elt], offset[elt], nInputPlane, inputHeight, | |
inputWidth, kH, kW, padH, padW, dH, dW, dilationH, | |
dilationW, im2col_step, deformable_group, columns); | |
columns = columns.view({group, columns.size(0) / group, columns.size(1)}); | |
weight = weight.view({group, weight.size(0) / group, weight.size(1), | |
weight.size(2), weight.size(3)}); | |
for (int g = 0; g < group; g++) { | |
output_buffer[elt][g] = output_buffer[elt][g] | |
.flatten(1) | |
.addmm_(weight[g].flatten(1), columns[g]) | |
.view_as(output_buffer[elt][g]); | |
} | |
} | |
output_buffer = output_buffer.view( | |
{output_buffer.size(0), output_buffer.size(1) * output_buffer.size(2), | |
output_buffer.size(3), output_buffer.size(4)}); | |
output_buffer = output_buffer.view({batchSize / im2col_step, nOutputPlane, | |
im2col_step, outputHeight, outputWidth}); | |
output_buffer.transpose_(1, 2); | |
output.copy_(output_buffer); | |
output = output.view({batchSize, nOutputPlane, outputHeight, outputWidth}); | |
input = input.view({batchSize, nInputPlane, inputHeight, inputWidth}); | |
offset = offset.view( | |
{batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth}); | |
if (batch == 0) { | |
output = output.view({nOutputPlane, outputHeight, outputWidth}); | |
input = input.view({nInputPlane, inputHeight, inputWidth}); | |
offset = offset.view({offset.size(1), offset.size(2), offset.size(3)}); | |
} | |
return 1; | |
} | |
int deform_conv_backward_input_cuda(at::Tensor input, at::Tensor offset, | |
at::Tensor gradOutput, at::Tensor gradInput, | |
at::Tensor gradOffset, at::Tensor weight, | |
at::Tensor columns, int kW, int kH, int dW, | |
int dH, int padW, int padH, int dilationW, | |
int dilationH, int group, | |
int deformable_group, int im2col_step) { | |
shape_check(input, offset, &gradOutput, weight, kH, kW, dH, dW, padH, padW, | |
dilationH, dilationW, group, deformable_group); | |
at::DeviceGuard guard(input.device()); | |
input = input.contiguous(); | |
offset = offset.contiguous(); | |
gradOutput = gradOutput.contiguous(); | |
weight = weight.contiguous(); | |
int batch = 1; | |
if (input.ndimension() == 3) { | |
// Force batch | |
batch = 0; | |
input = input.view({1, input.size(0), input.size(1), input.size(2)}); | |
offset = offset.view({1, offset.size(0), offset.size(1), offset.size(2)}); | |
gradOutput = gradOutput.view( | |
{1, gradOutput.size(0), gradOutput.size(1), gradOutput.size(2)}); | |
} | |
long batchSize = input.size(0); | |
long nInputPlane = input.size(1); | |
long inputHeight = input.size(2); | |
long inputWidth = input.size(3); | |
long nOutputPlane = weight.size(0); | |
long outputWidth = | |
(inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1; | |
long outputHeight = | |
(inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1; | |
TORCH_CHECK((offset.size(0) == batchSize), 3, "invalid batch size of offset"); | |
gradInput = gradInput.view({batchSize, nInputPlane, inputHeight, inputWidth}); | |
columns = at::zeros( | |
{nInputPlane * kW * kH, im2col_step * outputHeight * outputWidth}, | |
input.options()); | |
// change order of grad output | |
gradOutput = gradOutput.view({batchSize / im2col_step, im2col_step, | |
nOutputPlane, outputHeight, outputWidth}); | |
gradOutput.transpose_(1, 2); | |
gradInput = gradInput.view({batchSize / im2col_step, im2col_step, nInputPlane, | |
inputHeight, inputWidth}); | |
input = input.view({batchSize / im2col_step, im2col_step, nInputPlane, | |
inputHeight, inputWidth}); | |
gradOffset = gradOffset.view({batchSize / im2col_step, im2col_step, | |
deformable_group * 2 * kH * kW, outputHeight, | |
outputWidth}); | |
offset = | |
offset.view({batchSize / im2col_step, im2col_step, | |
deformable_group * 2 * kH * kW, outputHeight, outputWidth}); | |
for (int elt = 0; elt < batchSize / im2col_step; elt++) { | |
// divide into groups | |
columns = columns.view({group, columns.size(0) / group, columns.size(1)}); | |
weight = weight.view({group, weight.size(0) / group, weight.size(1), | |
weight.size(2), weight.size(3)}); | |
gradOutput = gradOutput.view( | |
{gradOutput.size(0), group, gradOutput.size(1) / group, | |
gradOutput.size(2), gradOutput.size(3), gradOutput.size(4)}); | |
for (int g = 0; g < group; g++) { | |
columns[g] = columns[g].addmm_(weight[g].flatten(1).transpose(0, 1), | |
gradOutput[elt][g].flatten(1), 0.0f, 1.0f); | |
} | |
columns = | |
columns.view({columns.size(0) * columns.size(1), columns.size(2)}); | |
gradOutput = gradOutput.view( | |
{gradOutput.size(0), gradOutput.size(1) * gradOutput.size(2), | |
gradOutput.size(3), gradOutput.size(4), gradOutput.size(5)}); | |
deformable_col2im_coord(columns, input[elt], offset[elt], nInputPlane, | |
inputHeight, inputWidth, kH, kW, padH, padW, dH, dW, | |
dilationH, dilationW, im2col_step, deformable_group, | |
gradOffset[elt]); | |
deformable_col2im(columns, offset[elt], nInputPlane, inputHeight, | |
inputWidth, kH, kW, padH, padW, dH, dW, dilationH, | |
dilationW, im2col_step, deformable_group, gradInput[elt]); | |
} | |
gradOutput.transpose_(1, 2); | |
gradOutput = | |
gradOutput.view({batchSize, nOutputPlane, outputHeight, outputWidth}); | |
gradInput = gradInput.view({batchSize, nInputPlane, inputHeight, inputWidth}); | |
input = input.view({batchSize, nInputPlane, inputHeight, inputWidth}); | |
gradOffset = gradOffset.view( | |
{batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth}); | |
offset = offset.view( | |
{batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth}); | |
if (batch == 0) { | |
gradOutput = gradOutput.view({nOutputPlane, outputHeight, outputWidth}); | |
input = input.view({nInputPlane, inputHeight, inputWidth}); | |
gradInput = gradInput.view({nInputPlane, inputHeight, inputWidth}); | |
offset = offset.view({offset.size(1), offset.size(2), offset.size(3)}); | |
gradOffset = | |
gradOffset.view({offset.size(1), offset.size(2), offset.size(3)}); | |
} | |
return 1; | |
} | |
int deform_conv_backward_parameters_cuda( | |
at::Tensor input, at::Tensor offset, at::Tensor gradOutput, | |
at::Tensor gradWeight, // at::Tensor gradBias, | |
at::Tensor columns, at::Tensor ones, int kW, int kH, int dW, int dH, | |
int padW, int padH, int dilationW, int dilationH, int group, | |
int deformable_group, float scale, int im2col_step) { | |
// todo: transpose and reshape outGrad | |
// todo: reshape columns | |
// todo: add im2col_step as input | |
shape_check(input, offset, &gradOutput, gradWeight, kH, kW, dH, dW, padH, | |
padW, dilationH, dilationW, group, deformable_group); | |
at::DeviceGuard guard(input.device()); | |
input = input.contiguous(); | |
offset = offset.contiguous(); | |
gradOutput = gradOutput.contiguous(); | |
int batch = 1; | |
if (input.ndimension() == 3) { | |
// Force batch | |
batch = 0; | |
input = input.view( | |
at::IntList({1, input.size(0), input.size(1), input.size(2)})); | |
gradOutput = gradOutput.view( | |
{1, gradOutput.size(0), gradOutput.size(1), gradOutput.size(2)}); | |
} | |
long batchSize = input.size(0); | |
long nInputPlane = input.size(1); | |
long inputHeight = input.size(2); | |
long inputWidth = input.size(3); | |
long nOutputPlane = gradWeight.size(0); | |
long outputWidth = | |
(inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1; | |
long outputHeight = | |
(inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1; | |
TORCH_CHECK((offset.size(0) == batchSize), "invalid batch size of offset"); | |
columns = at::zeros( | |
{nInputPlane * kW * kH, im2col_step * outputHeight * outputWidth}, | |
input.options()); | |
gradOutput = gradOutput.view({batchSize / im2col_step, im2col_step, | |
nOutputPlane, outputHeight, outputWidth}); | |
gradOutput.transpose_(1, 2); | |
at::Tensor gradOutputBuffer = at::zeros_like(gradOutput); | |
gradOutputBuffer = | |
gradOutputBuffer.view({batchSize / im2col_step, nOutputPlane, im2col_step, | |
outputHeight, outputWidth}); | |
gradOutputBuffer.copy_(gradOutput); | |
gradOutputBuffer = | |
gradOutputBuffer.view({batchSize / im2col_step, nOutputPlane, | |
im2col_step * outputHeight, outputWidth}); | |
gradOutput.transpose_(1, 2); | |
gradOutput = | |
gradOutput.view({batchSize, nOutputPlane, outputHeight, outputWidth}); | |
input = input.view({batchSize / im2col_step, im2col_step, nInputPlane, | |
inputHeight, inputWidth}); | |
offset = | |
offset.view({batchSize / im2col_step, im2col_step, | |
deformable_group * 2 * kH * kW, outputHeight, outputWidth}); | |
for (int elt = 0; elt < batchSize / im2col_step; elt++) { | |
deformable_im2col(input[elt], offset[elt], nInputPlane, inputHeight, | |
inputWidth, kH, kW, padH, padW, dH, dW, dilationH, | |
dilationW, im2col_step, deformable_group, columns); | |
// divide into group | |
gradOutputBuffer = gradOutputBuffer.view( | |
{gradOutputBuffer.size(0), group, gradOutputBuffer.size(1) / group, | |
gradOutputBuffer.size(2), gradOutputBuffer.size(3)}); | |
columns = columns.view({group, columns.size(0) / group, columns.size(1)}); | |
gradWeight = | |
gradWeight.view({group, gradWeight.size(0) / group, gradWeight.size(1), | |
gradWeight.size(2), gradWeight.size(3)}); | |
for (int g = 0; g < group; g++) { | |
gradWeight[g] = gradWeight[g] | |
.flatten(1) | |
.addmm_(gradOutputBuffer[elt][g].flatten(1), | |
columns[g].transpose(1, 0), 1.0, scale) | |
.view_as(gradWeight[g]); | |
} | |
gradOutputBuffer = gradOutputBuffer.view( | |
{gradOutputBuffer.size(0), | |
gradOutputBuffer.size(1) * gradOutputBuffer.size(2), | |
gradOutputBuffer.size(3), gradOutputBuffer.size(4)}); | |
columns = | |
columns.view({columns.size(0) * columns.size(1), columns.size(2)}); | |
gradWeight = gradWeight.view({gradWeight.size(0) * gradWeight.size(1), | |
gradWeight.size(2), gradWeight.size(3), | |
gradWeight.size(4)}); | |
} | |
input = input.view({batchSize, nInputPlane, inputHeight, inputWidth}); | |
offset = offset.view( | |
{batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth}); | |
if (batch == 0) { | |
gradOutput = gradOutput.view({nOutputPlane, outputHeight, outputWidth}); | |
input = input.view({nInputPlane, inputHeight, inputWidth}); | |
} | |
return 1; | |
} | |
void modulated_deform_conv_cuda_forward( | |
at::Tensor input, at::Tensor weight, at::Tensor bias, at::Tensor ones, | |
at::Tensor offset, at::Tensor mask, at::Tensor output, at::Tensor columns, | |
int kernel_h, int kernel_w, const int stride_h, const int stride_w, | |
const int pad_h, const int pad_w, const int dilation_h, | |
const int dilation_w, const int group, const int deformable_group, | |
const bool with_bias) { | |
TORCH_CHECK(input.is_contiguous(), "input tensor has to be contiguous"); | |
TORCH_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous"); | |
at::DeviceGuard guard(input.device()); | |
const int batch = input.size(0); | |
const int channels = input.size(1); | |
const int height = input.size(2); | |
const int width = input.size(3); | |
const int channels_out = weight.size(0); | |
const int channels_kernel = weight.size(1); | |
const int kernel_h_ = weight.size(2); | |
const int kernel_w_ = weight.size(3); | |
if (kernel_h_ != kernel_h || kernel_w_ != kernel_w) | |
AT_ERROR("Input shape and kernel shape won't match: (%d x %d vs %d x %d).", | |
kernel_h_, kernel_w, kernel_h_, kernel_w_); | |
if (channels != channels_kernel * group) | |
AT_ERROR("Input shape and kernel channels won't match: (%d vs %d).", | |
channels, channels_kernel * group); | |
const int height_out = | |
(height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1; | |
const int width_out = | |
(width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1; | |
if (ones.ndimension() != 2 || | |
ones.size(0) * ones.size(1) < height_out * width_out) { | |
// Resize plane and fill with ones... | |
ones = at::ones({height_out, width_out}, input.options()); | |
} | |
// resize output | |
output = output.view({batch, channels_out, height_out, width_out}).zero_(); | |
// resize temporary columns | |
columns = | |
at::zeros({channels * kernel_h * kernel_w, 1 * height_out * width_out}, | |
input.options()); | |
output = output.view({output.size(0), group, output.size(1) / group, | |
output.size(2), output.size(3)}); | |
for (int b = 0; b < batch; b++) { | |
modulated_deformable_im2col_cuda( | |
input[b], offset[b], mask[b], 1, channels, height, width, height_out, | |
width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w, | |
dilation_h, dilation_w, deformable_group, columns); | |
// divide into group | |
weight = weight.view({group, weight.size(0) / group, weight.size(1), | |
weight.size(2), weight.size(3)}); | |
columns = columns.view({group, columns.size(0) / group, columns.size(1)}); | |
for (int g = 0; g < group; g++) { | |
output[b][g] = output[b][g] | |
.flatten(1) | |
.addmm_(weight[g].flatten(1), columns[g]) | |
.view_as(output[b][g]); | |
} | |
weight = weight.view({weight.size(0) * weight.size(1), weight.size(2), | |
weight.size(3), weight.size(4)}); | |
columns = | |
columns.view({columns.size(0) * columns.size(1), columns.size(2)}); | |
} | |
output = output.view({output.size(0), output.size(1) * output.size(2), | |
output.size(3), output.size(4)}); | |
if (with_bias) { | |
output += bias.view({1, bias.size(0), 1, 1}); | |
} | |
} | |
void modulated_deform_conv_cuda_backward( | |
at::Tensor input, at::Tensor weight, at::Tensor bias, at::Tensor ones, | |
at::Tensor offset, at::Tensor mask, at::Tensor columns, | |
at::Tensor grad_input, at::Tensor grad_weight, at::Tensor grad_bias, | |
at::Tensor grad_offset, at::Tensor grad_mask, at::Tensor grad_output, | |
int kernel_h, int kernel_w, int stride_h, int stride_w, int pad_h, | |
int pad_w, int dilation_h, int dilation_w, int group, int deformable_group, | |
const bool with_bias) { | |
TORCH_CHECK(input.is_contiguous(), "input tensor has to be contiguous"); | |
TORCH_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous"); | |
at::DeviceGuard guard(input.device()); | |
const int batch = input.size(0); | |
const int channels = input.size(1); | |
const int height = input.size(2); | |
const int width = input.size(3); | |
const int channels_kernel = weight.size(1); | |
const int kernel_h_ = weight.size(2); | |
const int kernel_w_ = weight.size(3); | |
if (kernel_h_ != kernel_h || kernel_w_ != kernel_w) | |
AT_ERROR("Input shape and kernel shape won't match: (%d x %d vs %d x %d).", | |
kernel_h_, kernel_w, kernel_h_, kernel_w_); | |
if (channels != channels_kernel * group) | |
AT_ERROR("Input shape and kernel channels won't match: (%d vs %d).", | |
channels, channels_kernel * group); | |
const int height_out = | |
(height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1; | |
const int width_out = | |
(width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1; | |
if (ones.ndimension() != 2 || | |
ones.size(0) * ones.size(1) < height_out * width_out) { | |
// Resize plane and fill with ones... | |
ones = at::ones({height_out, width_out}, input.options()); | |
} | |
grad_input = grad_input.view({batch, channels, height, width}); | |
columns = at::zeros({channels * kernel_h * kernel_w, height_out * width_out}, | |
input.options()); | |
grad_output = | |
grad_output.view({grad_output.size(0), group, grad_output.size(1) / group, | |
grad_output.size(2), grad_output.size(3)}); | |
for (int b = 0; b < batch; b++) { | |
// divide int group | |
columns = columns.view({group, columns.size(0) / group, columns.size(1)}); | |
weight = weight.view({group, weight.size(0) / group, weight.size(1), | |
weight.size(2), weight.size(3)}); | |
for (int g = 0; g < group; g++) { | |
columns[g].addmm_(weight[g].flatten(1).transpose(0, 1), | |
grad_output[b][g].flatten(1), 0.0f, 1.0f); | |
} | |
columns = | |
columns.view({columns.size(0) * columns.size(1), columns.size(2)}); | |
weight = weight.view({weight.size(0) * weight.size(1), weight.size(2), | |
weight.size(3), weight.size(4)}); | |
// gradient w.r.t. input coordinate data | |
modulated_deformable_col2im_coord_cuda( | |
columns, input[b], offset[b], mask[b], 1, channels, height, width, | |
height_out, width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h, | |
stride_w, dilation_h, dilation_w, deformable_group, grad_offset[b], | |
grad_mask[b]); | |
// gradient w.r.t. input data | |
modulated_deformable_col2im_cuda( | |
columns, offset[b], mask[b], 1, channels, height, width, height_out, | |
width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w, | |
dilation_h, dilation_w, deformable_group, grad_input[b]); | |
// gradient w.r.t. weight, dWeight should accumulate across the batch and | |
// group | |
modulated_deformable_im2col_cuda( | |
input[b], offset[b], mask[b], 1, channels, height, width, height_out, | |
width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w, | |
dilation_h, dilation_w, deformable_group, columns); | |
columns = columns.view({group, columns.size(0) / group, columns.size(1)}); | |
grad_weight = grad_weight.view({group, grad_weight.size(0) / group, | |
grad_weight.size(1), grad_weight.size(2), | |
grad_weight.size(3)}); | |
if (with_bias) | |
grad_bias = grad_bias.view({group, grad_bias.size(0) / group}); | |
for (int g = 0; g < group; g++) { | |
grad_weight[g] = | |
grad_weight[g] | |
.flatten(1) | |
.addmm_(grad_output[b][g].flatten(1), columns[g].transpose(0, 1)) | |
.view_as(grad_weight[g]); | |
if (with_bias) { | |
grad_bias[g] = | |
grad_bias[g] | |
.view({-1, 1}) | |
.addmm_(grad_output[b][g].flatten(1), ones.view({-1, 1})) | |
.view(-1); | |
} | |
} | |
columns = | |
columns.view({columns.size(0) * columns.size(1), columns.size(2)}); | |
grad_weight = grad_weight.view({grad_weight.size(0) * grad_weight.size(1), | |
grad_weight.size(2), grad_weight.size(3), | |
grad_weight.size(4)}); | |
if (with_bias) | |
grad_bias = grad_bias.view({grad_bias.size(0) * grad_bias.size(1)}); | |
} | |
grad_output = grad_output.view({grad_output.size(0) * grad_output.size(1), | |
grad_output.size(2), grad_output.size(3), | |
grad_output.size(4)}); | |
} | |