Spaces:
Sleeping
Sleeping
# modify from https://github.com/rosinality/stylegan2-pytorch/blob/master/op/fused_act.py # noqa:E501 | |
import os | |
import torch | |
from torch import nn | |
from torch.autograd import Function | |
BASICSR_JIT = os.getenv('BASICSR_JIT') | |
if BASICSR_JIT == 'True': | |
from torch.utils.cpp_extension import load | |
module_path = os.path.dirname(__file__) | |
fused_act_ext = load( | |
'fused', | |
sources=[ | |
os.path.join(module_path, 'src', 'fused_bias_act.cpp'), | |
os.path.join(module_path, 'src', 'fused_bias_act_kernel.cu'), | |
], | |
) | |
else: | |
try: | |
from . import fused_act_ext | |
except ImportError: | |
pass | |
# avoid annoying print output | |
# print(f'Cannot import deform_conv_ext. Error: {error}. You may need to: \n ' | |
# '1. compile with BASICSR_EXT=True. or\n ' | |
# '2. set BASICSR_JIT=True during running') | |
class FusedLeakyReLUFunctionBackward(Function): | |
def forward(ctx, grad_output, out, negative_slope, scale): | |
ctx.save_for_backward(out) | |
ctx.negative_slope = negative_slope | |
ctx.scale = scale | |
empty = grad_output.new_empty(0) | |
grad_input = fused_act_ext.fused_bias_act(grad_output, empty, out, 3, 1, negative_slope, scale) | |
dim = [0] | |
if grad_input.ndim > 2: | |
dim += list(range(2, grad_input.ndim)) | |
grad_bias = grad_input.sum(dim).detach() | |
return grad_input, grad_bias | |
def backward(ctx, gradgrad_input, gradgrad_bias): | |
out, = ctx.saved_tensors | |
gradgrad_out = fused_act_ext.fused_bias_act(gradgrad_input, gradgrad_bias, out, 3, 1, ctx.negative_slope, | |
ctx.scale) | |
return gradgrad_out, None, None, None | |
class FusedLeakyReLUFunction(Function): | |
def forward(ctx, input, bias, negative_slope, scale): | |
empty = input.new_empty(0) | |
out = fused_act_ext.fused_bias_act(input, bias, empty, 3, 0, negative_slope, scale) | |
ctx.save_for_backward(out) | |
ctx.negative_slope = negative_slope | |
ctx.scale = scale | |
return out | |
def backward(ctx, grad_output): | |
out, = ctx.saved_tensors | |
grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply(grad_output, out, ctx.negative_slope, ctx.scale) | |
return grad_input, grad_bias, None, None | |
class FusedLeakyReLU(nn.Module): | |
def __init__(self, channel, negative_slope=0.2, scale=2**0.5): | |
super().__init__() | |
self.bias = nn.Parameter(torch.zeros(channel)) | |
self.negative_slope = negative_slope | |
self.scale = scale | |
def forward(self, input): | |
return fused_leaky_relu(input, self.bias, self.negative_slope, self.scale) | |
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2**0.5): | |
return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale) | |