Zongsheng
first upload
06f26d7
raw
history blame
4.66 kB
import numpy as np
import os
import random
import time
import torch
from os import path as osp
from .dist_util import master_only
def set_random_seed(seed):
"""Set random seeds."""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def get_time_str():
return time.strftime('%Y%m%d_%H%M%S', time.localtime())
def mkdir_and_rename(path):
"""mkdirs. If path exists, rename it with timestamp and create a new one.
Args:
path (str): Folder path.
"""
if osp.exists(path):
new_name = path + '_archived_' + get_time_str()
print(f'Path already exists. Rename it to {new_name}', flush=True)
os.rename(path, new_name)
os.makedirs(path, exist_ok=True)
@master_only
def make_exp_dirs(opt):
"""Make dirs for experiments."""
path_opt = opt['path'].copy()
if opt['is_train']:
mkdir_and_rename(path_opt.pop('experiments_root'))
else:
mkdir_and_rename(path_opt.pop('results_root'))
for key, path in path_opt.items():
if ('strict_load' in key) or ('pretrain_network' in key) or ('resume' in key) or ('param_key' in key):
continue
else:
os.makedirs(path, exist_ok=True)
def scandir(dir_path, suffix=None, recursive=False, full_path=False):
"""Scan a directory to find the interested files.
Args:
dir_path (str): Path of the directory.
suffix (str | tuple(str), optional): File suffix that we are
interested in. Default: None.
recursive (bool, optional): If set to True, recursively scan the
directory. Default: False.
full_path (bool, optional): If set to True, include the dir_path.
Default: False.
Returns:
A generator for all the interested files with relative paths.
"""
if (suffix is not None) and not isinstance(suffix, (str, tuple)):
raise TypeError('"suffix" must be a string or tuple of strings')
root = dir_path
def _scandir(dir_path, suffix, recursive):
for entry in os.scandir(dir_path):
if not entry.name.startswith('.') and entry.is_file():
if full_path:
return_path = entry.path
else:
return_path = osp.relpath(entry.path, root)
if suffix is None:
yield return_path
elif return_path.endswith(suffix):
yield return_path
else:
if recursive:
yield from _scandir(entry.path, suffix=suffix, recursive=recursive)
else:
continue
return _scandir(dir_path, suffix=suffix, recursive=recursive)
def check_resume(opt, resume_iter):
"""Check resume states and pretrain_network paths.
Args:
opt (dict): Options.
resume_iter (int): Resume iteration.
"""
if opt['path']['resume_state']:
# get all the networks
networks = [key for key in opt.keys() if key.startswith('network_')]
flag_pretrain = False
for network in networks:
if opt['path'].get(f'pretrain_{network}') is not None:
flag_pretrain = True
if flag_pretrain:
print('pretrain_network path will be ignored during resuming.')
# set pretrained model paths
for network in networks:
name = f'pretrain_{network}'
basename = network.replace('network_', '')
if opt['path'].get('ignore_resume_networks') is None or (network
not in opt['path']['ignore_resume_networks']):
opt['path'][name] = osp.join(opt['path']['models'], f'net_{basename}_{resume_iter}.pth')
print(f"Set {name} to {opt['path'][name]}")
# change param_key to params in resume
param_keys = [key for key in opt['path'].keys() if key.startswith('param_key')]
for param_key in param_keys:
if opt['path'][param_key] == 'params_ema':
opt['path'][param_key] = 'params'
print(f'Set {param_key} to params')
def sizeof_fmt(size, suffix='B'):
"""Get human readable file size.
Args:
size (int): File size.
suffix (str): Suffix. Default: 'B'.
Return:
str: Formatted file size.
"""
for unit in ['', 'K', 'M', 'G', 'T', 'P', 'E', 'Z']:
if abs(size) < 1024.0:
return f'{size:3.1f} {unit}{suffix}'
size /= 1024.0
return f'{size:3.1f} Y{suffix}'