DifFace / basicsr /models /esrgan_model.py
Zongsheng
first upload
06f26d7
raw
history blame
3.17 kB
import torch
from collections import OrderedDict
from basicsr.utils.registry import MODEL_REGISTRY
from .srgan_model import SRGANModel
@MODEL_REGISTRY.register()
class ESRGANModel(SRGANModel):
"""ESRGAN model for single image super-resolution."""
def optimize_parameters(self, current_iter):
# optimize net_g
for p in self.net_d.parameters():
p.requires_grad = False
self.optimizer_g.zero_grad()
self.output = self.net_g(self.lq)
l_g_total = 0
loss_dict = OrderedDict()
if (current_iter % self.net_d_iters == 0 and current_iter > self.net_d_init_iters):
# pixel loss
if self.cri_pix:
l_g_pix = self.cri_pix(self.output, self.gt)
l_g_total += l_g_pix
loss_dict['l_g_pix'] = l_g_pix
# perceptual loss
if self.cri_perceptual:
l_g_percep, l_g_style = self.cri_perceptual(self.output, self.gt)
if l_g_percep is not None:
l_g_total += l_g_percep
loss_dict['l_g_percep'] = l_g_percep
if l_g_style is not None:
l_g_total += l_g_style
loss_dict['l_g_style'] = l_g_style
# gan loss (relativistic gan)
real_d_pred = self.net_d(self.gt).detach()
fake_g_pred = self.net_d(self.output)
l_g_real = self.cri_gan(real_d_pred - torch.mean(fake_g_pred), False, is_disc=False)
l_g_fake = self.cri_gan(fake_g_pred - torch.mean(real_d_pred), True, is_disc=False)
l_g_gan = (l_g_real + l_g_fake) / 2
l_g_total += l_g_gan
loss_dict['l_g_gan'] = l_g_gan
l_g_total.backward()
self.optimizer_g.step()
# optimize net_d
for p in self.net_d.parameters():
p.requires_grad = True
self.optimizer_d.zero_grad()
# gan loss (relativistic gan)
# In order to avoid the error in distributed training:
# "Error detected in CudnnBatchNormBackward: RuntimeError: one of
# the variables needed for gradient computation has been modified by
# an inplace operation",
# we separate the backwards for real and fake, and also detach the
# tensor for calculating mean.
# real
fake_d_pred = self.net_d(self.output).detach()
real_d_pred = self.net_d(self.gt)
l_d_real = self.cri_gan(real_d_pred - torch.mean(fake_d_pred), True, is_disc=True) * 0.5
l_d_real.backward()
# fake
fake_d_pred = self.net_d(self.output.detach())
l_d_fake = self.cri_gan(fake_d_pred - torch.mean(real_d_pred.detach()), False, is_disc=True) * 0.5
l_d_fake.backward()
self.optimizer_d.step()
loss_dict['l_d_real'] = l_d_real
loss_dict['l_d_fake'] = l_d_fake
loss_dict['out_d_real'] = torch.mean(real_d_pred.detach())
loss_dict['out_d_fake'] = torch.mean(fake_d_pred.detach())
self.log_dict = self.reduce_loss_dict(loss_dict)
if self.ema_decay > 0:
self.model_ema(decay=self.ema_decay)