Spaces:
Running
on
T4
Running
on
T4
model: | |
target: models.unet.UNetModel | |
params: | |
image_size: 512 | |
in_channels: 3 | |
model_channels: 32 | |
out_channels: 6 | |
attention_resolutions: [32, 16, 8] | |
dropout: 0 | |
channel_mult: [1, 2, 4, 8, 8, 16, 16] | |
num_res_blocks: [1, 2, 2, 2, 2, 3, 4] | |
conv_resample: True | |
dims: 2 | |
use_fp16: False | |
num_head_channels: 64 | |
use_scale_shift_norm: True | |
resblock_updown: False | |
use_new_attention_order: False | |
diffusion: | |
target: models.script_util.create_gaussian_diffusion | |
params: | |
steps: 1000 | |
learn_sigma: True | |
sigma_small: False | |
noise_schedule: linear | |
use_kl: False | |
predict_xstart: False | |
rescale_timesteps: False | |
rescale_learned_sigmas: True | |
timestep_respacing: "" | |
train: | |
lr: 1e-4 | |
batch: [32, 4] # batchsize for training and validation | |
microbatch: 8 | |
use_fp16: False | |
num_workers: 16 | |
prefetch_factor: 2 | |
iterations: 800000 | |
weight_decay: 0 | |
scheduler: step # step or cosin | |
milestones: [10000, 800000] | |
ema_rates: [0.999] | |
save_freq: 10000 | |
val_freq: 5000 | |
log_freq: [1000, 2000] | |
data: | |
train: | |
type: face | |
params: | |
ffhq_txt: ./datapipe/files_txt/ffhq512.txt | |
out_size: 512 | |
transform_type: face | |