DifFace / utils /util_sisr.py
Zongsheng
first upload
06f26d7
raw
history blame
6.43 kB
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Power by Zongsheng Yue 2021-12-07 21:37:58
import sys
import math
import torch
import numpy as np
import scipy.ndimage as snd
from scipy.special import softmax
from scipy.interpolate import interp2d
import torch.nn.functional as F
from . import util_image
from ResizeRight.resize_right import resize
def modcrop(im, sf):
h, w = im.shape[:2]
h -= (h % sf)
w -= (w % sf)
return im[:h, :w,]
#--------------------------------------------Kernel-----------------------------------------------
def sigma2kernel(sigma, k_size=21, sf=3, shift=False):
'''
Generate Gaussian kernel according to cholesky decomposion.
Input:
sigma: N x 1 x 2 x 2 torch tensor, covariance matrix
k_size: integer, kernel size
sf: scale factor
Output:
kernel: N x 1 x k x k torch tensor
'''
try:
sigma_inv = torch.inverse(sigma)
except:
sigma_disturb = sigma + torch.eye(2, dtype=sigma.dtype, device=sigma.device).unsqueeze(0).unsqueeze(0) * 1e-5
sigma_inv = torch.inverse(sigma_disturb)
# Set expectation position (shifting kernel for aligned image)
if shift:
center = k_size // 2 + 0.5 * (sf - k_size % 2) # + 0.5 * (sf - k_size % 2)
else:
center = k_size // 2
# Create meshgrid for Gaussian
X, Y = torch.meshgrid(torch.arange(k_size), torch.arange(k_size))
Z = torch.stack((X, Y), dim=2).to(device=sigma.device, dtype=sigma.dtype).view(1, -1, 2, 1) # 1 x k^2 x 2 x 1
# Calcualte Gaussian for every pixel of the kernel
ZZ = Z - center # 1 x k^2 x 2 x 1
ZZ_t = ZZ.permute(0, 1, 3, 2) # 1 x k^2 x 1 x 2
ZZZ = -0.5 * ZZ_t.matmul(sigma_inv).matmul(ZZ).squeeze(-1).squeeze(-1) # N x k^2
kernel = F.softmax(ZZZ, dim=1) # N x k^2
return kernel.view(-1, 1, k_size, k_size) # N x 1 x k x k
def shifted_anisotropic_Gaussian(k_size=21, sf=4, lambda_1=1.2, lambda_2=5., theta=0, shift=True):
'''
# modified version of https://github.com/cszn/USRNet/blob/master/utils/utils_sisr.py
'''
# set covariance matrix
Lam = np.diag([lambda_1, lambda_2])
U = np.array([[np.cos(theta), -np.sin(theta)],
[np.sin(theta), np.cos(theta)]])
sigma = U @ Lam @ U.T # 2 x 2
inv_sigma = np.linalg.inv(sigma)[None, None, :, :] # 1 x 1 x 2 x 2
# set expectation position (shifting kernel for aligned image)
if shift:
center = k_size // 2 + 0.5*(sf - k_size % 2)
else:
center = k_size // 2
# Create meshgrid for Gaussian
X, Y = np.meshgrid(range(k_size), range(k_size))
Z = np.stack([X, Y], 2).astype(np.float32)[:, :, :, None] # k x k x 2 x 1
# Calcualte Gaussian for every pixel of the kernel
ZZ = Z - center
ZZ_t = ZZ.transpose(0,1,3,2)
ZZZ = -0.5 * np.squeeze(ZZ_t @ inv_sigma @ ZZ).reshape([1, -1])
kernel = softmax(ZZZ, axis=1).reshape([k_size, k_size]) # k x k
# The convariance of the marginal distributions along x and y axis
s1, s2 = sigma[0, 0], sigma[1, 1]
# Pearson corrleation coefficient
rho = sigma[0, 1] / (math.sqrt(s1) * math.sqrt(s2))
kernel_infos = np.array([s1, s2, rho]) # (3,)
return kernel, kernel_infos
#------------------------------------------Degradation-------------------------------------------
def imconv_np(im, kernel, padding_mode='reflect', correlate=False):
'''
Image convolution or correlation.
Input:
im: h x w x c numpy array
kernel: k x k numpy array
padding_mode: 'reflect', 'constant' or 'wrap'
'''
if kernel.ndim != im.ndim: kernel = kernel[:, :, np.newaxis]
if correlate:
out = snd.correlate(im, kernel, mode=padding_mode)
else:
out = snd.convolve(im, kernel, mode=padding_mode)
return out
def conv_multi_kernel_tensor(im_hr, kernel, sf, downsampler):
'''
Degradation model by Pytorch.
Input:
im_hr: N x c x h x w
kernel: N x 1 x k x k
sf: scale factor
'''
im_hr_pad = F.pad(im_hr, (kernel.shape[-1] // 2,)*4, mode='reflect')
im_blur = F.conv3d(im_hr_pad.unsqueeze(0), kernel.unsqueeze(1), groups=im_hr.shape[0])
if downsampler.lower() == 'direct':
im_blur = im_blur[0, :, :, ::sf, ::sf] # N x c x ...
elif downsampler.lower() == 'bicubic':
im_blur = resize(im_blur, scale_factors=1/sf)
else:
sys.exit('Please input the corrected downsampler: Direct or Bicubic!')
return im_blur
def tidy_kernel(kernel, expect_size=21):
'''
Input:
kernel: p x p numpy array
'''
k_size = kernel.shape[-1]
kernel_new = np.zeros([expect_size, expect_size], dtype=kernel.dtype)
if expect_size >= k_size:
start_ind = expect_size // 2 - k_size // 2
end_ind = start_ind + k_size
kernel_new[start_ind:end_ind, start_ind:end_ind] = kernel
elif expect_size < k_size:
start_ind = k_size // 2 - expect_size // 2
end_ind = start_ind + expect_size
kernel_new = kernel[start_ind:end_ind, start_ind:end_ind]
kernel_new /= kernel_new.sum()
return kernel_new
def shift_pixel(x, sf, upper_left=True):
"""shift pixel for super-resolution with different scale factors
Args:
x: WxHxC or WxH
sf: scale factor
upper_left: shift direction
"""
h, w = x.shape[:2]
shift = (sf-1)*0.5
xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
if upper_left:
x1 = xv + shift
y1 = yv + shift
else:
x1 = xv - shift
y1 = yv - shift
x1 = np.clip(x1, 0, w-1)
y1 = np.clip(y1, 0, h-1)
if x.ndim == 2:
x = interp2d(xv, yv, x)(x1, y1)
if x.ndim == 3:
for i in range(x.shape[-1]):
x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
return x
#-----------------------------------------Transform--------------------------------------------
class Bicubic:
def __init__(self, scale=0.25):
self.scale = scale
def __call__(self, im, scale=None, out_shape=None):
scale = self.scale if scale is None else scale
out = resize(im, scale_factors=scale, out_shape=None)
return out