Spaces:
Running
on
T4
Running
on
T4
import cv2 | |
import random | |
import torch | |
def mod_crop(img, scale): | |
"""Mod crop images, used during testing. | |
Args: | |
img (ndarray): Input image. | |
scale (int): Scale factor. | |
Returns: | |
ndarray: Result image. | |
""" | |
img = img.copy() | |
if img.ndim in (2, 3): | |
h, w = img.shape[0], img.shape[1] | |
h_remainder, w_remainder = h % scale, w % scale | |
img = img[:h - h_remainder, :w - w_remainder, ...] | |
else: | |
raise ValueError(f'Wrong img ndim: {img.ndim}.') | |
return img | |
def paired_random_crop(img_gts, img_lqs, gt_patch_size, scale, gt_path=None): | |
"""Paired random crop. Support Numpy array and Tensor inputs. | |
It crops lists of lq and gt images with corresponding locations. | |
Args: | |
img_gts (list[ndarray] | ndarray | list[Tensor] | Tensor): GT images. Note that all images | |
should have the same shape. If the input is an ndarray, it will | |
be transformed to a list containing itself. | |
img_lqs (list[ndarray] | ndarray): LQ images. Note that all images | |
should have the same shape. If the input is an ndarray, it will | |
be transformed to a list containing itself. | |
gt_patch_size (int): GT patch size. | |
scale (int): Scale factor. | |
gt_path (str): Path to ground-truth. Default: None. | |
Returns: | |
list[ndarray] | ndarray: GT images and LQ images. If returned results | |
only have one element, just return ndarray. | |
""" | |
if not isinstance(img_gts, list): | |
img_gts = [img_gts] | |
if not isinstance(img_lqs, list): | |
img_lqs = [img_lqs] | |
# determine input type: Numpy array or Tensor | |
input_type = 'Tensor' if torch.is_tensor(img_gts[0]) else 'Numpy' | |
if input_type == 'Tensor': | |
h_lq, w_lq = img_lqs[0].size()[-2:] | |
h_gt, w_gt = img_gts[0].size()[-2:] | |
else: | |
h_lq, w_lq = img_lqs[0].shape[0:2] | |
h_gt, w_gt = img_gts[0].shape[0:2] | |
lq_patch_size = gt_patch_size // scale | |
if h_gt != h_lq * scale or w_gt != w_lq * scale: | |
raise ValueError(f'Scale mismatches. GT ({h_gt}, {w_gt}) is not {scale}x ', | |
f'multiplication of LQ ({h_lq}, {w_lq}).') | |
if h_lq < lq_patch_size or w_lq < lq_patch_size: | |
raise ValueError(f'LQ ({h_lq}, {w_lq}) is smaller than patch size ' | |
f'({lq_patch_size}, {lq_patch_size}). ' | |
f'Please remove {gt_path}.') | |
# randomly choose top and left coordinates for lq patch | |
top = random.randint(0, h_lq - lq_patch_size) | |
left = random.randint(0, w_lq - lq_patch_size) | |
# crop lq patch | |
if input_type == 'Tensor': | |
img_lqs = [v[:, :, top:top + lq_patch_size, left:left + lq_patch_size] for v in img_lqs] | |
else: | |
img_lqs = [v[top:top + lq_patch_size, left:left + lq_patch_size, ...] for v in img_lqs] | |
# crop corresponding gt patch | |
top_gt, left_gt = int(top * scale), int(left * scale) | |
if input_type == 'Tensor': | |
img_gts = [v[:, :, top_gt:top_gt + gt_patch_size, left_gt:left_gt + gt_patch_size] for v in img_gts] | |
else: | |
img_gts = [v[top_gt:top_gt + gt_patch_size, left_gt:left_gt + gt_patch_size, ...] for v in img_gts] | |
if len(img_gts) == 1: | |
img_gts = img_gts[0] | |
if len(img_lqs) == 1: | |
img_lqs = img_lqs[0] | |
return img_gts, img_lqs | |
def augment(imgs, hflip=True, rotation=True, flows=None, return_status=False): | |
"""Augment: horizontal flips OR rotate (0, 90, 180, 270 degrees). | |
We use vertical flip and transpose for rotation implementation. | |
All the images in the list use the same augmentation. | |
Args: | |
imgs (list[ndarray] | ndarray): Images to be augmented. If the input | |
is an ndarray, it will be transformed to a list. | |
hflip (bool): Horizontal flip. Default: True. | |
rotation (bool): Ratotation. Default: True. | |
flows (list[ndarray]: Flows to be augmented. If the input is an | |
ndarray, it will be transformed to a list. | |
Dimension is (h, w, 2). Default: None. | |
return_status (bool): Return the status of flip and rotation. | |
Default: False. | |
Returns: | |
list[ndarray] | ndarray: Augmented images and flows. If returned | |
results only have one element, just return ndarray. | |
""" | |
hflip = hflip and random.random() < 0.5 | |
vflip = rotation and random.random() < 0.5 | |
rot90 = rotation and random.random() < 0.5 | |
def _augment(img): | |
if hflip: # horizontal | |
cv2.flip(img, 1, img) | |
if vflip: # vertical | |
cv2.flip(img, 0, img) | |
if rot90: | |
img = img.transpose(1, 0, 2) | |
return img | |
def _augment_flow(flow): | |
if hflip: # horizontal | |
cv2.flip(flow, 1, flow) | |
flow[:, :, 0] *= -1 | |
if vflip: # vertical | |
cv2.flip(flow, 0, flow) | |
flow[:, :, 1] *= -1 | |
if rot90: | |
flow = flow.transpose(1, 0, 2) | |
flow = flow[:, :, [1, 0]] | |
return flow | |
if not isinstance(imgs, list): | |
imgs = [imgs] | |
imgs = [_augment(img) for img in imgs] | |
if len(imgs) == 1: | |
imgs = imgs[0] | |
if flows is not None: | |
if not isinstance(flows, list): | |
flows = [flows] | |
flows = [_augment_flow(flow) for flow in flows] | |
if len(flows) == 1: | |
flows = flows[0] | |
return imgs, flows | |
else: | |
if return_status: | |
return imgs, (hflip, vflip, rot90) | |
else: | |
return imgs | |
def img_rotate(img, angle, center=None, scale=1.0): | |
"""Rotate image. | |
Args: | |
img (ndarray): Image to be rotated. | |
angle (float): Rotation angle in degrees. Positive values mean | |
counter-clockwise rotation. | |
center (tuple[int]): Rotation center. If the center is None, | |
initialize it as the center of the image. Default: None. | |
scale (float): Isotropic scale factor. Default: 1.0. | |
""" | |
(h, w) = img.shape[:2] | |
if center is None: | |
center = (w // 2, h // 2) | |
matrix = cv2.getRotationMatrix2D(center, angle, scale) | |
rotated_img = cv2.warpAffine(img, matrix, (w, h)) | |
return rotated_img | |