Spaces:
Sleeping
Sleeping
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.nn.utils.spectral_norm import spectral_norm | |
from basicsr.utils.registry import ARCH_REGISTRY | |
from .dfdnet_util import AttentionBlock, Blur, MSDilationBlock, UpResBlock, adaptive_instance_normalization | |
from .vgg_arch import VGGFeatureExtractor | |
class SFTUpBlock(nn.Module): | |
"""Spatial feature transform (SFT) with upsampling block. | |
Args: | |
in_channel (int): Number of input channels. | |
out_channel (int): Number of output channels. | |
kernel_size (int): Kernel size in convolutions. Default: 3. | |
padding (int): Padding in convolutions. Default: 1. | |
""" | |
def __init__(self, in_channel, out_channel, kernel_size=3, padding=1): | |
super(SFTUpBlock, self).__init__() | |
self.conv1 = nn.Sequential( | |
Blur(in_channel), | |
spectral_norm(nn.Conv2d(in_channel, out_channel, kernel_size, padding=padding)), | |
nn.LeakyReLU(0.04, True), | |
# The official codes use two LeakyReLU here, so 0.04 for equivalent | |
) | |
self.convup = nn.Sequential( | |
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False), | |
spectral_norm(nn.Conv2d(out_channel, out_channel, kernel_size, padding=padding)), | |
nn.LeakyReLU(0.2, True), | |
) | |
# for SFT scale and shift | |
self.scale_block = nn.Sequential( | |
spectral_norm(nn.Conv2d(in_channel, out_channel, 3, 1, 1)), nn.LeakyReLU(0.2, True), | |
spectral_norm(nn.Conv2d(out_channel, out_channel, 3, 1, 1))) | |
self.shift_block = nn.Sequential( | |
spectral_norm(nn.Conv2d(in_channel, out_channel, 3, 1, 1)), nn.LeakyReLU(0.2, True), | |
spectral_norm(nn.Conv2d(out_channel, out_channel, 3, 1, 1)), nn.Sigmoid()) | |
# The official codes use sigmoid for shift block, do not know why | |
def forward(self, x, updated_feat): | |
out = self.conv1(x) | |
# SFT | |
scale = self.scale_block(updated_feat) | |
shift = self.shift_block(updated_feat) | |
out = out * scale + shift | |
# upsample | |
out = self.convup(out) | |
return out | |
class DFDNet(nn.Module): | |
"""DFDNet: Deep Face Dictionary Network. | |
It only processes faces with 512x512 size. | |
Args: | |
num_feat (int): Number of feature channels. | |
dict_path (str): Path to the facial component dictionary. | |
""" | |
def __init__(self, num_feat, dict_path): | |
super().__init__() | |
self.parts = ['left_eye', 'right_eye', 'nose', 'mouth'] | |
# part_sizes: [80, 80, 50, 110] | |
channel_sizes = [128, 256, 512, 512] | |
self.feature_sizes = np.array([256, 128, 64, 32]) | |
self.vgg_layers = ['relu2_2', 'relu3_4', 'relu4_4', 'conv5_4'] | |
self.flag_dict_device = False | |
# dict | |
self.dict = torch.load(dict_path) | |
# vgg face extractor | |
self.vgg_extractor = VGGFeatureExtractor( | |
layer_name_list=self.vgg_layers, | |
vgg_type='vgg19', | |
use_input_norm=True, | |
range_norm=True, | |
requires_grad=False) | |
# attention block for fusing dictionary features and input features | |
self.attn_blocks = nn.ModuleDict() | |
for idx, feat_size in enumerate(self.feature_sizes): | |
for name in self.parts: | |
self.attn_blocks[f'{name}_{feat_size}'] = AttentionBlock(channel_sizes[idx]) | |
# multi scale dilation block | |
self.multi_scale_dilation = MSDilationBlock(num_feat * 8, dilation=[4, 3, 2, 1]) | |
# upsampling and reconstruction | |
self.upsample0 = SFTUpBlock(num_feat * 8, num_feat * 8) | |
self.upsample1 = SFTUpBlock(num_feat * 8, num_feat * 4) | |
self.upsample2 = SFTUpBlock(num_feat * 4, num_feat * 2) | |
self.upsample3 = SFTUpBlock(num_feat * 2, num_feat) | |
self.upsample4 = nn.Sequential( | |
spectral_norm(nn.Conv2d(num_feat, num_feat, 3, 1, 1)), nn.LeakyReLU(0.2, True), UpResBlock(num_feat), | |
UpResBlock(num_feat), nn.Conv2d(num_feat, 3, kernel_size=3, stride=1, padding=1), nn.Tanh()) | |
def swap_feat(self, vgg_feat, updated_feat, dict_feat, location, part_name, f_size): | |
"""swap the features from the dictionary.""" | |
# get the original vgg features | |
part_feat = vgg_feat[:, :, location[1]:location[3], location[0]:location[2]].clone() | |
# resize original vgg features | |
part_resize_feat = F.interpolate(part_feat, dict_feat.size()[2:4], mode='bilinear', align_corners=False) | |
# use adaptive instance normalization to adjust color and illuminations | |
dict_feat = adaptive_instance_normalization(dict_feat, part_resize_feat) | |
# get similarity scores | |
similarity_score = F.conv2d(part_resize_feat, dict_feat) | |
similarity_score = F.softmax(similarity_score.view(-1), dim=0) | |
# select the most similar features in the dict (after norm) | |
select_idx = torch.argmax(similarity_score) | |
swap_feat = F.interpolate(dict_feat[select_idx:select_idx + 1], part_feat.size()[2:4]) | |
# attention | |
attn = self.attn_blocks[f'{part_name}_' + str(f_size)](swap_feat - part_feat) | |
attn_feat = attn * swap_feat | |
# update features | |
updated_feat[:, :, location[1]:location[3], location[0]:location[2]] = attn_feat + part_feat | |
return updated_feat | |
def put_dict_to_device(self, x): | |
if self.flag_dict_device is False: | |
for k, v in self.dict.items(): | |
for kk, vv in v.items(): | |
self.dict[k][kk] = vv.to(x) | |
self.flag_dict_device = True | |
def forward(self, x, part_locations): | |
""" | |
Now only support testing with batch size = 0. | |
Args: | |
x (Tensor): Input faces with shape (b, c, 512, 512). | |
part_locations (list[Tensor]): Part locations. | |
""" | |
self.put_dict_to_device(x) | |
# extract vggface features | |
vgg_features = self.vgg_extractor(x) | |
# update vggface features using the dictionary for each part | |
updated_vgg_features = [] | |
batch = 0 # only supports testing with batch size = 0 | |
for vgg_layer, f_size in zip(self.vgg_layers, self.feature_sizes): | |
dict_features = self.dict[f'{f_size}'] | |
vgg_feat = vgg_features[vgg_layer] | |
updated_feat = vgg_feat.clone() | |
# swap features from dictionary | |
for part_idx, part_name in enumerate(self.parts): | |
location = (part_locations[part_idx][batch] // (512 / f_size)).int() | |
updated_feat = self.swap_feat(vgg_feat, updated_feat, dict_features[part_name], location, part_name, | |
f_size) | |
updated_vgg_features.append(updated_feat) | |
vgg_feat_dilation = self.multi_scale_dilation(vgg_features['conv5_4']) | |
# use updated vgg features to modulate the upsampled features with | |
# SFT (Spatial Feature Transform) scaling and shifting manner. | |
upsampled_feat = self.upsample0(vgg_feat_dilation, updated_vgg_features[3]) | |
upsampled_feat = self.upsample1(upsampled_feat, updated_vgg_features[2]) | |
upsampled_feat = self.upsample2(upsampled_feat, updated_vgg_features[1]) | |
upsampled_feat = self.upsample3(upsampled_feat, updated_vgg_features[0]) | |
out = self.upsample4(upsampled_feat) | |
return out | |