Spaces:
Sleeping
Sleeping
import math | |
import os | |
import torch | |
from torch import nn as nn | |
from torch.autograd import Function | |
from torch.autograd.function import once_differentiable | |
from torch.nn import functional as F | |
from torch.nn.modules.utils import _pair, _single | |
BASICSR_JIT = os.getenv('BASICSR_JIT') | |
if BASICSR_JIT == 'True': | |
from torch.utils.cpp_extension import load | |
module_path = os.path.dirname(__file__) | |
deform_conv_ext = load( | |
'deform_conv', | |
sources=[ | |
os.path.join(module_path, 'src', 'deform_conv_ext.cpp'), | |
os.path.join(module_path, 'src', 'deform_conv_cuda.cpp'), | |
os.path.join(module_path, 'src', 'deform_conv_cuda_kernel.cu'), | |
], | |
) | |
else: | |
try: | |
from . import deform_conv_ext | |
except ImportError: | |
pass | |
# avoid annoying print output | |
# print(f'Cannot import deform_conv_ext. Error: {error}. You may need to: \n ' | |
# '1. compile with BASICSR_EXT=True. or\n ' | |
# '2. set BASICSR_JIT=True during running') | |
class DeformConvFunction(Function): | |
def forward(ctx, | |
input, | |
offset, | |
weight, | |
stride=1, | |
padding=0, | |
dilation=1, | |
groups=1, | |
deformable_groups=1, | |
im2col_step=64): | |
if input is not None and input.dim() != 4: | |
raise ValueError(f'Expected 4D tensor as input, got {input.dim()}D tensor instead.') | |
ctx.stride = _pair(stride) | |
ctx.padding = _pair(padding) | |
ctx.dilation = _pair(dilation) | |
ctx.groups = groups | |
ctx.deformable_groups = deformable_groups | |
ctx.im2col_step = im2col_step | |
ctx.save_for_backward(input, offset, weight) | |
output = input.new_empty(DeformConvFunction._output_size(input, weight, ctx.padding, ctx.dilation, ctx.stride)) | |
ctx.bufs_ = [input.new_empty(0), input.new_empty(0)] # columns, ones | |
if not input.is_cuda: | |
raise NotImplementedError | |
else: | |
cur_im2col_step = min(ctx.im2col_step, input.shape[0]) | |
assert (input.shape[0] % cur_im2col_step) == 0, 'im2col step must divide batchsize' | |
deform_conv_ext.deform_conv_forward(input, weight, | |
offset, output, ctx.bufs_[0], ctx.bufs_[1], weight.size(3), | |
weight.size(2), ctx.stride[1], ctx.stride[0], ctx.padding[1], | |
ctx.padding[0], ctx.dilation[1], ctx.dilation[0], ctx.groups, | |
ctx.deformable_groups, cur_im2col_step) | |
return output | |
def backward(ctx, grad_output): | |
input, offset, weight = ctx.saved_tensors | |
grad_input = grad_offset = grad_weight = None | |
if not grad_output.is_cuda: | |
raise NotImplementedError | |
else: | |
cur_im2col_step = min(ctx.im2col_step, input.shape[0]) | |
assert (input.shape[0] % cur_im2col_step) == 0, 'im2col step must divide batchsize' | |
if ctx.needs_input_grad[0] or ctx.needs_input_grad[1]: | |
grad_input = torch.zeros_like(input) | |
grad_offset = torch.zeros_like(offset) | |
deform_conv_ext.deform_conv_backward_input(input, offset, grad_output, grad_input, | |
grad_offset, weight, ctx.bufs_[0], weight.size(3), | |
weight.size(2), ctx.stride[1], ctx.stride[0], ctx.padding[1], | |
ctx.padding[0], ctx.dilation[1], ctx.dilation[0], ctx.groups, | |
ctx.deformable_groups, cur_im2col_step) | |
if ctx.needs_input_grad[2]: | |
grad_weight = torch.zeros_like(weight) | |
deform_conv_ext.deform_conv_backward_parameters(input, offset, grad_output, grad_weight, | |
ctx.bufs_[0], ctx.bufs_[1], weight.size(3), | |
weight.size(2), ctx.stride[1], ctx.stride[0], | |
ctx.padding[1], ctx.padding[0], ctx.dilation[1], | |
ctx.dilation[0], ctx.groups, ctx.deformable_groups, 1, | |
cur_im2col_step) | |
return (grad_input, grad_offset, grad_weight, None, None, None, None, None) | |
def _output_size(input, weight, padding, dilation, stride): | |
channels = weight.size(0) | |
output_size = (input.size(0), channels) | |
for d in range(input.dim() - 2): | |
in_size = input.size(d + 2) | |
pad = padding[d] | |
kernel = dilation[d] * (weight.size(d + 2) - 1) + 1 | |
stride_ = stride[d] | |
output_size += ((in_size + (2 * pad) - kernel) // stride_ + 1, ) | |
if not all(map(lambda s: s > 0, output_size)): | |
raise ValueError(f'convolution input is too small (output would be {"x".join(map(str, output_size))})') | |
return output_size | |
class ModulatedDeformConvFunction(Function): | |
def forward(ctx, | |
input, | |
offset, | |
mask, | |
weight, | |
bias=None, | |
stride=1, | |
padding=0, | |
dilation=1, | |
groups=1, | |
deformable_groups=1): | |
ctx.stride = stride | |
ctx.padding = padding | |
ctx.dilation = dilation | |
ctx.groups = groups | |
ctx.deformable_groups = deformable_groups | |
ctx.with_bias = bias is not None | |
if not ctx.with_bias: | |
bias = input.new_empty(1) # fake tensor | |
if not input.is_cuda: | |
raise NotImplementedError | |
if weight.requires_grad or mask.requires_grad or offset.requires_grad or input.requires_grad: | |
ctx.save_for_backward(input, offset, mask, weight, bias) | |
output = input.new_empty(ModulatedDeformConvFunction._infer_shape(ctx, input, weight)) | |
ctx._bufs = [input.new_empty(0), input.new_empty(0)] | |
deform_conv_ext.modulated_deform_conv_forward(input, weight, bias, ctx._bufs[0], offset, mask, output, | |
ctx._bufs[1], weight.shape[2], weight.shape[3], ctx.stride, | |
ctx.stride, ctx.padding, ctx.padding, ctx.dilation, ctx.dilation, | |
ctx.groups, ctx.deformable_groups, ctx.with_bias) | |
return output | |
def backward(ctx, grad_output): | |
if not grad_output.is_cuda: | |
raise NotImplementedError | |
input, offset, mask, weight, bias = ctx.saved_tensors | |
grad_input = torch.zeros_like(input) | |
grad_offset = torch.zeros_like(offset) | |
grad_mask = torch.zeros_like(mask) | |
grad_weight = torch.zeros_like(weight) | |
grad_bias = torch.zeros_like(bias) | |
deform_conv_ext.modulated_deform_conv_backward(input, weight, bias, ctx._bufs[0], offset, mask, ctx._bufs[1], | |
grad_input, grad_weight, grad_bias, grad_offset, grad_mask, | |
grad_output, weight.shape[2], weight.shape[3], ctx.stride, | |
ctx.stride, ctx.padding, ctx.padding, ctx.dilation, ctx.dilation, | |
ctx.groups, ctx.deformable_groups, ctx.with_bias) | |
if not ctx.with_bias: | |
grad_bias = None | |
return (grad_input, grad_offset, grad_mask, grad_weight, grad_bias, None, None, None, None, None) | |
def _infer_shape(ctx, input, weight): | |
n = input.size(0) | |
channels_out = weight.size(0) | |
height, width = input.shape[2:4] | |
kernel_h, kernel_w = weight.shape[2:4] | |
height_out = (height + 2 * ctx.padding - (ctx.dilation * (kernel_h - 1) + 1)) // ctx.stride + 1 | |
width_out = (width + 2 * ctx.padding - (ctx.dilation * (kernel_w - 1) + 1)) // ctx.stride + 1 | |
return n, channels_out, height_out, width_out | |
deform_conv = DeformConvFunction.apply | |
modulated_deform_conv = ModulatedDeformConvFunction.apply | |
class DeformConv(nn.Module): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride=1, | |
padding=0, | |
dilation=1, | |
groups=1, | |
deformable_groups=1, | |
bias=False): | |
super(DeformConv, self).__init__() | |
assert not bias | |
assert in_channels % groups == 0, f'in_channels {in_channels} is not divisible by groups {groups}' | |
assert out_channels % groups == 0, f'out_channels {out_channels} is not divisible by groups {groups}' | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.kernel_size = _pair(kernel_size) | |
self.stride = _pair(stride) | |
self.padding = _pair(padding) | |
self.dilation = _pair(dilation) | |
self.groups = groups | |
self.deformable_groups = deformable_groups | |
# enable compatibility with nn.Conv2d | |
self.transposed = False | |
self.output_padding = _single(0) | |
self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels // self.groups, *self.kernel_size)) | |
self.reset_parameters() | |
def reset_parameters(self): | |
n = self.in_channels | |
for k in self.kernel_size: | |
n *= k | |
stdv = 1. / math.sqrt(n) | |
self.weight.data.uniform_(-stdv, stdv) | |
def forward(self, x, offset): | |
# To fix an assert error in deform_conv_cuda.cpp:128 | |
# input image is smaller than kernel | |
input_pad = (x.size(2) < self.kernel_size[0] or x.size(3) < self.kernel_size[1]) | |
if input_pad: | |
pad_h = max(self.kernel_size[0] - x.size(2), 0) | |
pad_w = max(self.kernel_size[1] - x.size(3), 0) | |
x = F.pad(x, (0, pad_w, 0, pad_h), 'constant', 0).contiguous() | |
offset = F.pad(offset, (0, pad_w, 0, pad_h), 'constant', 0).contiguous() | |
out = deform_conv(x, offset, self.weight, self.stride, self.padding, self.dilation, self.groups, | |
self.deformable_groups) | |
if input_pad: | |
out = out[:, :, :out.size(2) - pad_h, :out.size(3) - pad_w].contiguous() | |
return out | |
class DeformConvPack(DeformConv): | |
"""A Deformable Conv Encapsulation that acts as normal Conv layers. | |
Args: | |
in_channels (int): Same as nn.Conv2d. | |
out_channels (int): Same as nn.Conv2d. | |
kernel_size (int or tuple[int]): Same as nn.Conv2d. | |
stride (int or tuple[int]): Same as nn.Conv2d. | |
padding (int or tuple[int]): Same as nn.Conv2d. | |
dilation (int or tuple[int]): Same as nn.Conv2d. | |
groups (int): Same as nn.Conv2d. | |
bias (bool or str): If specified as `auto`, it will be decided by the | |
norm_cfg. Bias will be set as True if norm_cfg is None, otherwise | |
False. | |
""" | |
_version = 2 | |
def __init__(self, *args, **kwargs): | |
super(DeformConvPack, self).__init__(*args, **kwargs) | |
self.conv_offset = nn.Conv2d( | |
self.in_channels, | |
self.deformable_groups * 2 * self.kernel_size[0] * self.kernel_size[1], | |
kernel_size=self.kernel_size, | |
stride=_pair(self.stride), | |
padding=_pair(self.padding), | |
dilation=_pair(self.dilation), | |
bias=True) | |
self.init_offset() | |
def init_offset(self): | |
self.conv_offset.weight.data.zero_() | |
self.conv_offset.bias.data.zero_() | |
def forward(self, x): | |
offset = self.conv_offset(x) | |
return deform_conv(x, offset, self.weight, self.stride, self.padding, self.dilation, self.groups, | |
self.deformable_groups) | |
class ModulatedDeformConv(nn.Module): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride=1, | |
padding=0, | |
dilation=1, | |
groups=1, | |
deformable_groups=1, | |
bias=True): | |
super(ModulatedDeformConv, self).__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.kernel_size = _pair(kernel_size) | |
self.stride = stride | |
self.padding = padding | |
self.dilation = dilation | |
self.groups = groups | |
self.deformable_groups = deformable_groups | |
self.with_bias = bias | |
# enable compatibility with nn.Conv2d | |
self.transposed = False | |
self.output_padding = _single(0) | |
self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels // groups, *self.kernel_size)) | |
if bias: | |
self.bias = nn.Parameter(torch.Tensor(out_channels)) | |
else: | |
self.register_parameter('bias', None) | |
self.init_weights() | |
def init_weights(self): | |
n = self.in_channels | |
for k in self.kernel_size: | |
n *= k | |
stdv = 1. / math.sqrt(n) | |
self.weight.data.uniform_(-stdv, stdv) | |
if self.bias is not None: | |
self.bias.data.zero_() | |
def forward(self, x, offset, mask): | |
return modulated_deform_conv(x, offset, mask, self.weight, self.bias, self.stride, self.padding, self.dilation, | |
self.groups, self.deformable_groups) | |
class ModulatedDeformConvPack(ModulatedDeformConv): | |
"""A ModulatedDeformable Conv Encapsulation that acts as normal Conv layers. | |
Args: | |
in_channels (int): Same as nn.Conv2d. | |
out_channels (int): Same as nn.Conv2d. | |
kernel_size (int or tuple[int]): Same as nn.Conv2d. | |
stride (int or tuple[int]): Same as nn.Conv2d. | |
padding (int or tuple[int]): Same as nn.Conv2d. | |
dilation (int or tuple[int]): Same as nn.Conv2d. | |
groups (int): Same as nn.Conv2d. | |
bias (bool or str): If specified as `auto`, it will be decided by the | |
norm_cfg. Bias will be set as True if norm_cfg is None, otherwise | |
False. | |
""" | |
_version = 2 | |
def __init__(self, *args, **kwargs): | |
super(ModulatedDeformConvPack, self).__init__(*args, **kwargs) | |
self.conv_offset = nn.Conv2d( | |
self.in_channels, | |
self.deformable_groups * 3 * self.kernel_size[0] * self.kernel_size[1], | |
kernel_size=self.kernel_size, | |
stride=_pair(self.stride), | |
padding=_pair(self.padding), | |
dilation=_pair(self.dilation), | |
bias=True) | |
self.init_weights() | |
def init_weights(self): | |
super(ModulatedDeformConvPack, self).init_weights() | |
if hasattr(self, 'conv_offset'): | |
self.conv_offset.weight.data.zero_() | |
self.conv_offset.bias.data.zero_() | |
def forward(self, x): | |
out = self.conv_offset(x) | |
o1, o2, mask = torch.chunk(out, 3, dim=1) | |
offset = torch.cat((o1, o2), dim=1) | |
mask = torch.sigmoid(mask) | |
return modulated_deform_conv(x, offset, mask, self.weight, self.bias, self.stride, self.padding, self.dilation, | |
self.groups, self.deformable_groups) | |