Spaces:
Running
on
T4
Running
on
T4
#!/usr/bin/env python | |
# -*- coding:utf-8 -*- | |
''' | |
This code is borrowed from: | |
https://github.com/TencentARC/GFPGAN/blob/master/gfpgan/data/ffhq_degradation_dataset.py | |
''' | |
import cv2 | |
import math | |
import numpy as np | |
import os.path as osp | |
import torch | |
import torch.utils.data as data | |
from basicsr.data import degradations as degradations | |
from basicsr.data.data_util import paths_from_folder | |
from basicsr.data.transforms import augment | |
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor | |
from basicsr.utils.registry import DATASET_REGISTRY | |
from torchvision.transforms.functional import ( | |
adjust_brightness, | |
adjust_contrast, | |
adjust_hue, | |
adjust_saturation, | |
normalize | |
) | |
from utils import util_common | |
class FFHQDegradationDataset(data.Dataset): | |
"""FFHQ dataset for GFPGAN. | |
It reads high resolution images, and then generate low-quality (LQ) images on-the-fly. | |
Args: | |
opt (dict): Config for train datasets. It contains the following keys: | |
dataroot_gt (str): Data root path for gt. | |
io_backend (dict): IO backend type and other kwarg. | |
mean (list | tuple): Image mean. | |
std (list | tuple): Image std. | |
use_hflip (bool): Whether to horizontally flip. | |
Please see more options in the codes. | |
""" | |
def __init__(self, opt): | |
super(FFHQDegradationDataset, self).__init__() | |
self.opt = opt | |
# file client (io backend) | |
self.file_client = None | |
self.io_backend_opt = opt['io_backend'] | |
self.need_gt_path = opt['need_gt_path'] | |
self.mean = opt['mean'] | |
self.std = opt['std'] | |
self.out_size = opt['out_size'] | |
self.crop_components = opt.get('crop_components', False) # facial components | |
self.eye_enlarge_ratio = opt.get('eye_enlarge_ratio', 1) # whether enlarge eye regions | |
if self.crop_components: | |
# load component list from a pre-process pth files | |
self.components_list = torch.load(opt.get('component_path')) | |
# file client | |
self.paths = util_common.readline_txt(opt['files_txt']) | |
# degradation configurations | |
self.blur_kernel_size = opt['blur_kernel_size'] | |
self.kernel_list = opt['kernel_list'] | |
self.kernel_prob = opt['kernel_prob'] | |
self.blur_sigma = opt['blur_sigma'] | |
self.downsample_range = opt['downsample_range'] | |
self.noise_range = opt['noise_range'] | |
self.jpeg_range = opt['jpeg_range'] | |
# color jitter | |
self.color_jitter_prob = opt.get('color_jitter_prob') | |
self.color_jitter_pt_prob = opt.get('color_jitter_pt_prob') | |
self.color_jitter_shift = opt.get('color_jitter_shift', 20) | |
# to gray | |
self.gray_prob = opt.get('gray_prob') | |
self.color_jitter_shift /= 255. | |
def color_jitter(img, shift): | |
"""jitter color: randomly jitter the RGB values, in numpy formats""" | |
jitter_val = np.random.uniform(-shift, shift, 3).astype(np.float32) | |
img = img + jitter_val | |
img = np.clip(img, 0, 1) | |
return img | |
def color_jitter_pt(img, brightness, contrast, saturation, hue): | |
"""jitter color: randomly jitter the brightness, contrast, saturation, and hue, in torch Tensor formats""" | |
fn_idx = torch.randperm(4) | |
for fn_id in fn_idx: | |
if fn_id == 0 and brightness is not None: | |
brightness_factor = torch.tensor(1.0).uniform_(brightness[0], brightness[1]).item() | |
img = adjust_brightness(img, brightness_factor) | |
if fn_id == 1 and contrast is not None: | |
contrast_factor = torch.tensor(1.0).uniform_(contrast[0], contrast[1]).item() | |
img = adjust_contrast(img, contrast_factor) | |
if fn_id == 2 and saturation is not None: | |
saturation_factor = torch.tensor(1.0).uniform_(saturation[0], saturation[1]).item() | |
img = adjust_saturation(img, saturation_factor) | |
if fn_id == 3 and hue is not None: | |
hue_factor = torch.tensor(1.0).uniform_(hue[0], hue[1]).item() | |
img = adjust_hue(img, hue_factor) | |
return img | |
def get_component_coordinates(self, index, status): | |
"""Get facial component (left_eye, right_eye, mouth) coordinates from a pre-loaded pth file""" | |
components_bbox = self.components_list[f'{index:08d}'] | |
if status[0]: # hflip | |
# exchange right and left eye | |
tmp = components_bbox['left_eye'] | |
components_bbox['left_eye'] = components_bbox['right_eye'] | |
components_bbox['right_eye'] = tmp | |
# modify the width coordinate | |
components_bbox['left_eye'][0] = self.out_size - components_bbox['left_eye'][0] | |
components_bbox['right_eye'][0] = self.out_size - components_bbox['right_eye'][0] | |
components_bbox['mouth'][0] = self.out_size - components_bbox['mouth'][0] | |
# get coordinates | |
locations = [] | |
for part in ['left_eye', 'right_eye', 'mouth']: | |
mean = components_bbox[part][0:2] | |
half_len = components_bbox[part][2] | |
if 'eye' in part: | |
half_len *= self.eye_enlarge_ratio | |
loc = np.hstack((mean - half_len + 1, mean + half_len)) | |
loc = torch.from_numpy(loc).float() | |
locations.append(loc) | |
return locations | |
def __getitem__(self, index): | |
if self.file_client is None: | |
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt) | |
# load gt image | |
# Shape: (h, w, c); channel order: BGR; image range: [0, 1], float32. | |
gt_path = self.paths[index] | |
img_bytes = self.file_client.get(gt_path) | |
img_gt = imfrombytes(img_bytes, float32=True) # [0, 1] | |
# random horizontal flip | |
img_gt, status = augment(img_gt, hflip=self.opt['use_hflip'], rotation=False, return_status=True) | |
h, w, _ = img_gt.shape | |
# get facial component coordinates | |
if self.crop_components: | |
locations = self.get_component_coordinates(index, status) | |
loc_left_eye, loc_right_eye, loc_mouth = locations | |
# ------------------------ generate lq image ------------------------ # | |
# blur | |
kernel = degradations.random_mixed_kernels( | |
self.kernel_list, | |
self.kernel_prob, | |
self.blur_kernel_size, | |
self.blur_sigma, | |
self.blur_sigma, [-math.pi, math.pi], | |
noise_range=None) | |
img_lq = cv2.filter2D(img_gt, -1, kernel) | |
# downsample | |
scale = np.random.uniform(self.downsample_range[0], self.downsample_range[1]) | |
img_lq = cv2.resize(img_lq, (int(w // scale), int(h // scale)), interpolation=cv2.INTER_LINEAR) | |
# noise | |
if self.noise_range is not None: | |
img_lq = degradations.random_add_gaussian_noise(img_lq, self.noise_range) | |
# jpeg compression | |
if self.jpeg_range is not None: | |
img_lq = degradations.random_add_jpg_compression(img_lq, self.jpeg_range) | |
# resize to original size | |
img_lq = cv2.resize(img_lq, (w, h), interpolation=cv2.INTER_LINEAR) | |
# random color jitter (only for lq) | |
if self.color_jitter_prob is not None and (np.random.uniform() < self.color_jitter_prob): | |
img_lq = self.color_jitter(img_lq, self.color_jitter_shift) | |
# random to gray (only for lq) | |
if self.gray_prob and np.random.uniform() < self.gray_prob: | |
img_lq = cv2.cvtColor(img_lq, cv2.COLOR_BGR2GRAY) | |
img_lq = np.tile(img_lq[:, :, None], [1, 1, 3]) | |
if self.opt.get('gt_gray'): # whether convert GT to gray images | |
img_gt = cv2.cvtColor(img_gt, cv2.COLOR_BGR2GRAY) | |
img_gt = np.tile(img_gt[:, :, None], [1, 1, 3]) # repeat the color channels | |
# BGR to RGB, HWC to CHW, numpy to tensor | |
img_gt, img_lq = img2tensor([img_gt, img_lq], bgr2rgb=True, float32=True) | |
# random color jitter (pytorch version) (only for lq) | |
if self.color_jitter_pt_prob is not None and (np.random.uniform() < self.color_jitter_pt_prob): | |
brightness = self.opt.get('brightness', (0.5, 1.5)) | |
contrast = self.opt.get('contrast', (0.5, 1.5)) | |
saturation = self.opt.get('saturation', (0, 1.5)) | |
hue = self.opt.get('hue', (-0.1, 0.1)) | |
img_lq = self.color_jitter_pt(img_lq, brightness, contrast, saturation, hue) | |
# round and clip | |
img_lq = torch.clamp((img_lq * 255.0).round(), 0, 255) / 255. | |
# normalize | |
normalize(img_gt, self.mean, self.std, inplace=True) | |
normalize(img_lq, self.mean, self.std, inplace=True) | |
out_dict = {'lq': img_lq, 'gt': img_gt } | |
if self.need_gt_path: | |
out_dict['gt_path'] = gt_path | |
if self.crop_components: | |
out_dict['loc_left_eye'] = loc_left_eye | |
out_dict['loc_right_eye'] = loc_right_eye | |
out_dict['loc_mouth'] = loc_mouth | |
return out_dict | |
def __len__(self): | |
return len(self.paths) | |