Spaces:
Running
on
T4
Running
on
T4
import argparse | |
import inspect | |
from . import gaussian_diffusion as gd | |
from .respace import SpacedDiffusion, space_timesteps | |
def create_gaussian_diffusion( | |
*, | |
steps=1000, | |
learn_sigma=False, | |
sigma_small=False, | |
noise_schedule="linear", | |
use_kl=False, | |
predict_xstart=False, | |
rescale_timesteps=False, | |
rescale_learned_sigmas=False, | |
timestep_respacing="", | |
): | |
betas = gd.get_named_beta_schedule(noise_schedule, steps) | |
if use_kl: | |
loss_type = gd.LossType.RESCALED_KL | |
elif rescale_learned_sigmas: | |
loss_type = gd.LossType.RESCALED_MSE | |
else: | |
loss_type = gd.LossType.MSE | |
if not timestep_respacing: | |
timestep_respacing = [steps] | |
return SpacedDiffusion( | |
use_timesteps=space_timesteps(steps, timestep_respacing), | |
betas=betas, | |
model_mean_type=( | |
gd.ModelMeanType.EPSILON if not predict_xstart else gd.ModelMeanType.START_X | |
), | |
model_var_type=( | |
( | |
gd.ModelVarType.FIXED_LARGE | |
if not sigma_small | |
else gd.ModelVarType.FIXED_SMALL | |
) | |
if not learn_sigma | |
else gd.ModelVarType.LEARNED_RANGE | |
), | |
loss_type=loss_type, | |
rescale_timesteps=rescale_timesteps, | |
) | |