Spaces:
Sleeping
Sleeping
#!/usr/bin/env python | |
# -*- coding:utf-8 -*- | |
# Power by Zongsheng Yue 2021-11-24 16:54:19 | |
import sys | |
import cv2 | |
import math | |
import torch | |
import random | |
import numpy as np | |
from scipy import fft | |
from pathlib import Path | |
from einops import rearrange | |
from torchvision.utils import make_grid | |
from skimage import img_as_ubyte, img_as_float32 | |
# --------------------------Metrics---------------------------- | |
def ssim(img1, img2): | |
C1 = (0.01 * 255)**2 | |
C2 = (0.03 * 255)**2 | |
img1 = img1.astype(np.float64) | |
img2 = img2.astype(np.float64) | |
kernel = cv2.getGaussianKernel(11, 1.5) | |
window = np.outer(kernel, kernel.transpose()) | |
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid | |
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5] | |
mu1_sq = mu1**2 | |
mu2_sq = mu2**2 | |
mu1_mu2 = mu1 * mu2 | |
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq | |
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq | |
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2 | |
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * | |
(sigma1_sq + sigma2_sq + C2)) | |
return ssim_map.mean() | |
def calculate_ssim(im1, im2, border=0, ycbcr=False): | |
''' | |
SSIM the same outputs as MATLAB's | |
im1, im2: h x w x , [0, 255], uint8 | |
''' | |
if not im1.shape == im2.shape: | |
raise ValueError('Input images must have the same dimensions.') | |
if ycbcr: | |
im1 = rgb2ycbcr(im1, True) | |
im2 = rgb2ycbcr(im2, True) | |
h, w = im1.shape[:2] | |
im1 = im1[border:h-border, border:w-border] | |
im2 = im2[border:h-border, border:w-border] | |
if im1.ndim == 2: | |
return ssim(im1, im2) | |
elif im1.ndim == 3: | |
if im1.shape[2] == 3: | |
ssims = [] | |
for i in range(3): | |
ssims.append(ssim(im1[:,:,i], im2[:,:,i])) | |
return np.array(ssims).mean() | |
elif im1.shape[2] == 1: | |
return ssim(np.squeeze(im1), np.squeeze(im2)) | |
else: | |
raise ValueError('Wrong input image dimensions.') | |
def calculate_psnr(im1, im2, border=0, ycbcr=False): | |
''' | |
PSNR metric. | |
im1, im2: h x w x , [0, 255], uint8 | |
''' | |
if not im1.shape == im2.shape: | |
raise ValueError('Input images must have the same dimensions.') | |
if ycbcr: | |
im1 = rgb2ycbcr(im1, True) | |
im2 = rgb2ycbcr(im2, True) | |
h, w = im1.shape[:2] | |
im1 = im1[border:h-border, border:w-border] | |
im2 = im2[border:h-border, border:w-border] | |
im1 = im1.astype(np.float64) | |
im2 = im2.astype(np.float64) | |
mse = np.mean((im1 - im2)**2) | |
if mse == 0: | |
return float('inf') | |
return 20 * math.log10(255.0 / math.sqrt(mse)) | |
def batch_PSNR(img, imclean, border=0, ycbcr=False): | |
if ycbcr: | |
img = rgb2ycbcrTorch(img, True) | |
imclean = rgb2ycbcrTorch(imclean, True) | |
Img = img.data.cpu().numpy() | |
Iclean = imclean.data.cpu().numpy() | |
Img = img_as_ubyte(Img) | |
Iclean = img_as_ubyte(Iclean) | |
PSNR = 0 | |
h, w = Iclean.shape[2:] | |
for i in range(Img.shape[0]): | |
PSNR += calculate_psnr(Iclean[i,:,].transpose((1,2,0)), Img[i,:,].transpose((1,2,0)), border) | |
return PSNR | |
def batch_SSIM(img, imclean, border=0, ycbcr=False): | |
if ycbcr: | |
img = rgb2ycbcrTorch(img, True) | |
imclean = rgb2ycbcrTorch(imclean, True) | |
Img = img.data.cpu().numpy() | |
Iclean = imclean.data.cpu().numpy() | |
Img = img_as_ubyte(Img) | |
Iclean = img_as_ubyte(Iclean) | |
SSIM = 0 | |
for i in range(Img.shape[0]): | |
SSIM += calculate_ssim(Iclean[i,:,].transpose((1,2,0)), Img[i,:,].transpose((1,2,0)), border) | |
return SSIM | |
def normalize_np(im, mean=0.5, std=0.5, reverse=False): | |
''' | |
Input: | |
im: h x w x c, numpy array | |
Normalize: (im - mean) / std | |
Reverse: im * std + mean | |
''' | |
if not isinstance(mean, (list, tuple)): | |
mean = [mean, ] * im.shape[2] | |
mean = np.array(mean).reshape([1, 1, im.shape[2]]) | |
if not isinstance(std, (list, tuple)): | |
std = [std, ] * im.shape[2] | |
std = np.array(std).reshape([1, 1, im.shape[2]]) | |
if not reverse: | |
out = (im.astype(np.float32) - mean) / std | |
else: | |
out = im.astype(np.float32) * std + mean | |
return out | |
def normalize_th(im, mean=0.5, std=0.5, reverse=False): | |
''' | |
Input: | |
im: b x c x h x w, torch tensor | |
Normalize: (im - mean) / std | |
Reverse: im * std + mean | |
''' | |
if not isinstance(mean, (list, tuple)): | |
mean = [mean, ] * im.shape[1] | |
mean = torch.tensor(mean, device=im.device).view([1, im.shape[1], 1, 1]) | |
if not isinstance(std, (list, tuple)): | |
std = [std, ] * im.shape[1] | |
std = torch.tensor(std, device=im.device).view([1, im.shape[1], 1, 1]) | |
if not reverse: | |
out = (im - mean) / std | |
else: | |
out = im * std + mean | |
return out | |
# ------------------------Image format-------------------------- | |
def rgb2ycbcr(im, only_y=True): | |
''' | |
same as matlab rgb2ycbcr | |
Input: | |
im: uint8 [0,255] or float [0,1] | |
only_y: only return Y channel | |
''' | |
# transform to float64 data type, range [0, 255] | |
if im.dtype == np.uint8: | |
im_temp = im.astype(np.float64) | |
else: | |
im_temp = (im * 255).astype(np.float64) | |
# convert | |
if only_y: | |
rlt = np.dot(im_temp, np.array([65.481, 128.553, 24.966])/ 255.0) + 16.0 | |
else: | |
rlt = np.matmul(im_temp, np.array([[65.481, -37.797, 112.0 ], | |
[128.553, -74.203, -93.786], | |
[24.966, 112.0, -18.214]])/255.0) + [16, 128, 128] | |
if im.dtype == np.uint8: | |
rlt = rlt.round() | |
else: | |
rlt /= 255. | |
return rlt.astype(im.dtype) | |
def rgb2ycbcrTorch(im, only_y=True): | |
''' | |
same as matlab rgb2ycbcr | |
Input: | |
im: float [0,1], N x 3 x H x W | |
only_y: only return Y channel | |
''' | |
# transform to range [0,255.0] | |
im_temp = im.permute([0,2,3,1]) * 255.0 # N x H x W x C --> N x H x W x C | |
# convert | |
if only_y: | |
rlt = torch.matmul(im_temp, torch.tensor([65.481, 128.553, 24.966], | |
device=im.device, dtype=im.dtype).view([3,1])/ 255.0) + 16.0 | |
else: | |
rlt = torch.matmul(im_temp, torch.tensor([[65.481, -37.797, 112.0 ], | |
[128.553, -74.203, -93.786], | |
[24.966, 112.0, -18.214]], | |
device=im.device, dtype=im.dtype)/255.0) + \ | |
torch.tensor([16, 128, 128]).view([-1, 1, 1, 3]) | |
rlt /= 255.0 | |
rlt.clamp_(0.0, 1.0) | |
return rlt.permute([0, 3, 1, 2]) | |
def bgr2rgb(im): return cv2.cvtColor(im, cv2.COLOR_BGR2RGB) | |
def rgb2bgr(im): return cv2.cvtColor(im, cv2.COLOR_RGB2BGR) | |
def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)): | |
"""Convert torch Tensors into image numpy arrays. | |
After clamping to [min, max], values will be normalized to [0, 1]. | |
Args: | |
tensor (Tensor or list[Tensor]): Accept shapes: | |
1) 4D mini-batch Tensor of shape (B x 3/1 x H x W); | |
2) 3D Tensor of shape (3/1 x H x W); | |
3) 2D Tensor of shape (H x W). | |
Tensor channel should be in RGB order. | |
rgb2bgr (bool): Whether to change rgb to bgr. | |
out_type (numpy type): output types. If ``np.uint8``, transform outputs | |
to uint8 type with range [0, 255]; otherwise, float type with | |
range [0, 1]. Default: ``np.uint8``. | |
min_max (tuple[int]): min and max values for clamp. | |
Returns: | |
(Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of | |
shape (H x W). The channel order is BGR. | |
""" | |
if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))): | |
raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}') | |
flag_tensor = torch.is_tensor(tensor) | |
if flag_tensor: | |
tensor = [tensor] | |
result = [] | |
for _tensor in tensor: | |
_tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max) | |
_tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0]) | |
n_dim = _tensor.dim() | |
if n_dim == 4: | |
img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy() | |
img_np = img_np.transpose(1, 2, 0) | |
if rgb2bgr: | |
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) | |
elif n_dim == 3: | |
img_np = _tensor.numpy() | |
img_np = img_np.transpose(1, 2, 0) | |
if img_np.shape[2] == 1: # gray image | |
img_np = np.squeeze(img_np, axis=2) | |
else: | |
if rgb2bgr: | |
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) | |
elif n_dim == 2: | |
img_np = _tensor.numpy() | |
else: | |
raise TypeError(f'Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}') | |
if out_type == np.uint8: | |
# Unlike MATLAB, numpy.unit8() WILL NOT round by default. | |
img_np = (img_np * 255.0).round() | |
img_np = img_np.astype(out_type) | |
result.append(img_np) | |
if len(result) == 1 and flag_tensor: | |
result = result[0] | |
return result | |
def img2tensor(imgs, out_type=torch.float32): | |
"""Convert image numpy arrays into torch tensor. | |
After clamping to [min, max], values will be normalized to [0, 1]. | |
Args: | |
imgs (Array or list[array]): Accept shapes: | |
3) list of numpy arrays | |
1) 3D numpy array of shape (H x W x 3/1); | |
2) 2D Tensor of shape (H x W). | |
Tensor channel should be in RGB order. | |
Returns: | |
(array or list): 3D ndarray of shape (H x W x C) or 2D ndarray of shape (H x W). | |
""" | |
def _img2tensor(img): | |
if img.ndim == 2: | |
tensor = torch.from_numpy(img[None, None,]).type(out_type) | |
elif img.ndim == 3: | |
tensor = torch.from_numpy(rearrange(img, 'h w c -> c h w')).type(out_type).unsqueeze(0) | |
else: | |
raise TypeError(f'2D or 3D numpy array expected, got{img.ndim}D array') | |
return tensor | |
if not (isinstance(imgs, np.ndarray) or (isinstance(imgs, list) and all(isinstance(t, np.ndarray) for t in imgs))): | |
raise TypeError(f'Numpy array or list of numpy array expected, got {type(imgs)}') | |
if isinstance(imgs, np.ndarray): | |
imgs = [imgs,] | |
result = [] | |
for _img in imgs: | |
result.append(_img2tensor(_img)) | |
if len(result) == 1 and isinstance(imgs, np.ndarray): | |
result = result[0] | |
return result | |
# ------------------------Image I/O----------------------------- | |
def imread(path, chn='rgb', dtype='float32'): | |
''' | |
Read image. | |
chn: 'rgb', 'bgr' or 'gray' | |
out: | |
im: h x w x c, numpy tensor | |
''' | |
im = cv2.imread(str(path), cv2.IMREAD_UNCHANGED) # BGR, uint8 | |
if chn.lower() == 'rgb': | |
if im.ndim == 3: | |
im = bgr2rgb(im) | |
else: | |
im = np.stack((im, im, im), axis=2) | |
elif chn.lower() == 'gray': | |
assert im.ndim == 2 | |
if dtype == 'float32': | |
im = im.astype(np.float32) / 255. | |
elif dtype == 'float64': | |
im = im.astype(np.float64) / 255. | |
elif dtype == 'uint8': | |
pass | |
else: | |
sys.exit('Please input corrected dtype: float32, float64 or uint8!') | |
if im.shape[2] > 3: | |
im = im[:, :, :3] | |
return im | |
def imwrite(im_in, path, chn='rgb', dtype_in='float32', qf=None): | |
''' | |
Save image. | |
Input: | |
im: h x w x c, numpy tensor | |
path: the saving path | |
chn: the channel order of the im, | |
''' | |
im = im_in.copy() | |
if isinstance(path, str): | |
path = Path(path) | |
if dtype_in != 'uint8': | |
im = img_as_ubyte(im) | |
if chn.lower() == 'rgb' and im.ndim == 3: | |
im = rgb2bgr(im) | |
if qf is not None and path.suffix.lower() in ['.jpg', '.jpeg']: | |
flag = cv2.imwrite(str(path), im, [int(cv2.IMWRITE_JPEG_QUALITY), int(qf)]) | |
else: | |
flag = cv2.imwrite(str(path), im) | |
return flag | |
def jpeg_compress(im, qf, chn_in='rgb'): | |
''' | |
Input: | |
im: h x w x 3 array | |
qf: compress factor, (0, 100] | |
chn_in: 'rgb' or 'bgr' | |
Return: | |
Compressed Image with channel order: chn_in | |
''' | |
# transform to BGR channle and uint8 data type | |
im_bgr = rgb2bgr(im) if chn_in.lower() == 'rgb' else im | |
if im.dtype != np.dtype('uint8'): im_bgr = img_as_ubyte(im_bgr) | |
# JPEG compress | |
flag, encimg = cv2.imencode('.jpg', im_bgr, [int(cv2.IMWRITE_JPEG_QUALITY), qf]) | |
assert flag | |
im_jpg_bgr = cv2.imdecode(encimg, 1) # uint8, BGR | |
# transform back to original channel and the original data type | |
im_out = bgr2rgb(im_jpg_bgr) if chn_in.lower() == 'rgb' else im_jpg_bgr | |
if im.dtype != np.dtype('uint8'): im_out = img_as_float32(im_out).astype(im.dtype) | |
return im_out | |
# ------------------------Augmentation----------------------------- | |
def data_aug_np(image, mode): | |
''' | |
Performs data augmentation of the input image | |
Input: | |
image: a cv2 (OpenCV) image | |
mode: int. Choice of transformation to apply to the image | |
0 - no transformation | |
1 - flip up and down | |
2 - rotate counterwise 90 degree | |
3 - rotate 90 degree and flip up and down | |
4 - rotate 180 degree | |
5 - rotate 180 degree and flip | |
6 - rotate 270 degree | |
7 - rotate 270 degree and flip | |
''' | |
if mode == 0: | |
# original | |
out = image | |
elif mode == 1: | |
# flip up and down | |
out = np.flipud(image) | |
elif mode == 2: | |
# rotate counterwise 90 degree | |
out = np.rot90(image) | |
elif mode == 3: | |
# rotate 90 degree and flip up and down | |
out = np.rot90(image) | |
out = np.flipud(out) | |
elif mode == 4: | |
# rotate 180 degree | |
out = np.rot90(image, k=2) | |
elif mode == 5: | |
# rotate 180 degree and flip | |
out = np.rot90(image, k=2) | |
out = np.flipud(out) | |
elif mode == 6: | |
# rotate 270 degree | |
out = np.rot90(image, k=3) | |
elif mode == 7: | |
# rotate 270 degree and flip | |
out = np.rot90(image, k=3) | |
out = np.flipud(out) | |
else: | |
raise Exception('Invalid choice of image transformation') | |
return out.copy() | |
def inverse_data_aug_np(image, mode): | |
''' | |
Performs inverse data augmentation of the input image | |
''' | |
if mode == 0: | |
# original | |
out = image | |
elif mode == 1: | |
out = np.flipud(image) | |
elif mode == 2: | |
out = np.rot90(image, axes=(1,0)) | |
elif mode == 3: | |
out = np.flipud(image) | |
out = np.rot90(out, axes=(1,0)) | |
elif mode == 4: | |
out = np.rot90(image, k=2, axes=(1,0)) | |
elif mode == 5: | |
out = np.flipud(image) | |
out = np.rot90(out, k=2, axes=(1,0)) | |
elif mode == 6: | |
out = np.rot90(image, k=3, axes=(1,0)) | |
elif mode == 7: | |
# rotate 270 degree and flip | |
out = np.flipud(image) | |
out = np.rot90(out, k=3, axes=(1,0)) | |
else: | |
raise Exception('Invalid choice of image transformation') | |
return out | |
class SpatialAug: | |
def __init__(self): | |
pass | |
def __call__(self, im, flag=None): | |
if flag is None: | |
flag = random.randint(0, 7) | |
out = data_aug_np(im, flag) | |
return out | |
# ----------------------Visualization---------------------------- | |
def imshow(x, title=None, cbar=False): | |
import matplotlib.pyplot as plt | |
plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray') | |
if title: | |
plt.title(title) | |
if cbar: | |
plt.colorbar() | |
plt.show() | |
# -----------------------Covolution------------------------------ | |
def imgrad(im, pading_mode='mirror'): | |
''' | |
Calculate image gradient. | |
Input: | |
im: h x w x c numpy array | |
''' | |
from scipy.ndimage import correlate # lazy import | |
wx = np.array([[0, 0, 0], | |
[-1, 1, 0], | |
[0, 0, 0]], dtype=np.float32) | |
wy = np.array([[0, -1, 0], | |
[0, 1, 0], | |
[0, 0, 0]], dtype=np.float32) | |
if im.ndim == 3: | |
gradx = np.stack( | |
[correlate(im[:,:,c], wx, mode=pading_mode) for c in range(im.shape[2])], | |
axis=2 | |
) | |
grady = np.stack( | |
[correlate(im[:,:,c], wy, mode=pading_mode) for c in range(im.shape[2])], | |
axis=2 | |
) | |
grad = np.concatenate((gradx, grady), axis=2) | |
else: | |
gradx = correlate(im, wx, mode=pading_mode) | |
grady = correlate(im, wy, mode=pading_mode) | |
grad = np.stack((gradx, grady), axis=2) | |
return {'gradx': gradx, 'grady': grady, 'grad':grad} | |
def imgrad_fft(im): | |
''' | |
Calculate image gradient. | |
Input: | |
im: h x w x c numpy array | |
''' | |
wx = np.rot90(np.array([[0, 0, 0], | |
[-1, 1, 0], | |
[0, 0, 0]], dtype=np.float32), k=2) | |
gradx = convfft(im, wx) | |
wy = np.rot90(np.array([[0, -1, 0], | |
[0, 1, 0], | |
[0, 0, 0]], dtype=np.float32), k=2) | |
grady = convfft(im, wy) | |
grad = np.concatenate((gradx, grady), axis=2) | |
return {'gradx': gradx, 'grady': grady, 'grad':grad} | |
def convfft(im, weight): | |
''' | |
Convolution with FFT | |
Input: | |
im: h1 x w1 x c numpy array | |
weight: h2 x w2 numpy array | |
Output: | |
out: h1 x w1 x c numpy array | |
''' | |
axes = (0,1) | |
otf = psf2otf(weight, im.shape[:2]) | |
if im.ndim == 3: | |
otf = np.tile(otf[:, :, None], (1,1,im.shape[2])) | |
out = fft.ifft2(fft.fft2(im, axes=axes) * otf, axes=axes).real | |
return out | |
def psf2otf(psf, shape): | |
""" | |
MATLAB psf2otf function. | |
Borrowed from https://github.com/aboucaud/pypher/blob/master/pypher/pypher.py. | |
Input: | |
psf : h x w numpy array | |
shape : list or tuple, output shape of the OTF array | |
Output: | |
otf : OTF array with the desirable shape | |
""" | |
if np.all(psf == 0): | |
return np.zeros_like(psf) | |
inshape = psf.shape | |
# Pad the PSF to outsize | |
psf = zero_pad(psf, shape, position='corner') | |
# Circularly shift OTF so that the 'center' of the PSF is [0,0] element of the array | |
for axis, axis_size in enumerate(inshape): | |
psf = np.roll(psf, -int(axis_size / 2), axis=axis) | |
# Compute the OTF | |
otf = fft.fft2(psf) | |
# Estimate the rough number of operations involved in the FFT | |
# and discard the PSF imaginary part if within roundoff error | |
# roundoff error = machine epsilon = sys.float_info.epsilon | |
# or np.finfo().eps | |
n_ops = np.sum(psf.size * np.log2(psf.shape)) | |
otf = np.real_if_close(otf, tol=n_ops) | |
return otf | |
def zero_pad(image, shape, position='corner'): | |
""" | |
Extends image to a certain size with zeros | |
Input: | |
image: real 2d numpy array | |
shape: tuple of int, desired output shape of the image | |
position : str, 'corner' or 'center', | |
The position of the input image in the output one: | |
* 'corner' | |
top-left corner (default) | |
* 'center' | |
centered | |
Output | |
padded_img: real numpy array | |
""" | |
shape = np.asarray(shape, dtype=int) | |
imshape = np.asarray(image.shape, dtype=int) | |
if np.alltrue(imshape == shape): | |
return image | |
if np.any(shape <= 0): | |
raise ValueError("ZERO_PAD: null or negative shape given") | |
dshape = shape - imshape | |
if np.any(dshape < 0): | |
raise ValueError("ZERO_PAD: target size smaller than source one") | |
pad_img = np.zeros(shape, dtype=image.dtype) | |
idx, idy = np.indices(imshape) | |
if position == 'center': | |
if np.any(dshape % 2 != 0): | |
raise ValueError("ZERO_PAD: source and target shapes have different parity.") | |
offx, offy = dshape // 2 | |
else: | |
offx, offy = (0, 0) | |
pad_img[idx + offx, idy + offy] = image | |
return pad_img | |
# ----------------------Patch Cropping---------------------------- | |
def random_crop(im, pch_size): | |
''' | |
Randomly crop a patch from the give image. | |
''' | |
h, w = im.shape[:2] | |
assert h > pch_size and w > pch_size | |
ind_h = random.randint(0, h-pch_size) | |
ind_w = random.randint(0, w-pch_size) | |
im_pch = im[ind_h:ind_h+pch_size, ind_w:ind_w+pch_size,] | |
return im_pch | |
class RandomCrop: | |
def __init__(self, pch_size): | |
self.pch_size = pch_size | |
def __call__(self, im): | |
return random_crop(im, self.pch_size) | |
class ImageSpliterNp: | |
def __init__(self, im, pch_size, stride, sf=1): | |
''' | |
Input: | |
im: h x w x c, numpy array, [0, 1], low-resolution image in SR | |
pch_size, stride: patch setting | |
sf: scale factor in image super-resolution | |
''' | |
assert stride <= pch_size | |
self.stride = stride | |
self.pch_size = pch_size | |
self.sf = sf | |
if im.ndim == 2: | |
im = im[:, :, None] | |
height, width, chn = im.shape | |
self.height_starts_list = self.extract_starts(height) | |
self.width_starts_list = self.extract_starts(width) | |
self.length = self.__len__() | |
self.num_pchs = 0 | |
self.im_ori = im | |
self.im_res = np.zeros([height*sf, width*sf, chn], dtype=im.dtype) | |
self.pixel_count = np.zeros([height*sf, width*sf, chn], dtype=im.dtype) | |
def extract_starts(self, length): | |
starts = list(range(0, length, self.stride)) | |
if starts[-1] + self.pch_size > length: | |
starts[-1] = length - self.pch_size | |
return starts | |
def __len__(self): | |
return len(self.height_starts_list) * len(self.width_starts_list) | |
def __iter__(self): | |
return self | |
def __next__(self): | |
if self.num_pchs < self.length: | |
w_start_idx = self.num_pchs // len(self.height_starts_list) | |
w_start = self.width_starts_list[w_start_idx] * self.sf | |
w_end = w_start + self.pch_size * self.sf | |
h_start_idx = self.num_pchs % len(self.height_starts_list) | |
h_start = self.height_starts_list[h_start_idx] * self.sf | |
h_end = h_start + self.pch_size * self.sf | |
pch = self.im_ori[h_start:h_end, w_start:w_end,] | |
self.w_start, self.w_end = w_start, w_end | |
self.h_start, self.h_end = h_start, h_end | |
self.num_pchs += 1 | |
else: | |
raise StopIteration(0) | |
return pch, (h_start, h_end, w_start, w_end) | |
def update(self, pch_res, index_infos): | |
''' | |
Input: | |
pch_res: pch_size x pch_size x 3, [0,1] | |
index_infos: (h_start, h_end, w_start, w_end) | |
''' | |
if index_infos is None: | |
w_start, w_end = self.w_start, self.w_end | |
h_start, h_end = self.h_start, self.h_end | |
else: | |
h_start, h_end, w_start, w_end = index_infos | |
self.im_res[h_start:h_end, w_start:w_end] += pch_res | |
self.pixel_count[h_start:h_end, w_start:w_end] += 1 | |
def gather(self): | |
assert np.all(self.pixel_count != 0) | |
return self.im_res / self.pixel_count | |
class ImageSpliterTh: | |
def __init__(self, im, pch_size, stride, sf=1): | |
''' | |
Input: | |
im: n x c x h x w, torch tensor, float, low-resolution image in SR | |
pch_size, stride: patch setting | |
sf: scale factor in image super-resolution | |
''' | |
assert stride <= pch_size | |
self.stride = stride | |
self.pch_size = pch_size | |
self.sf = sf | |
bs, chn, height, width= im.shape | |
self.height_starts_list = self.extract_starts(height) | |
self.width_starts_list = self.extract_starts(width) | |
self.length = self.__len__() | |
self.num_pchs = 0 | |
self.im_ori = im | |
self.im_res = torch.zeros([bs, chn, height*sf, width*sf], dtype=im.dtype, device=im.device) | |
self.pixel_count = torch.zeros([bs, chn, height*sf, width*sf], dtype=im.dtype, device=im.device) | |
def extract_starts(self, length): | |
starts = list(range(0, length, self.stride)) | |
if starts[-1] + self.pch_size > length: | |
starts[-1] = length - self.pch_size | |
return starts | |
def __len__(self): | |
return len(self.height_starts_list) * len(self.width_starts_list) | |
def __iter__(self): | |
return self | |
def __next__(self): | |
if self.num_pchs < self.length: | |
w_start_idx = self.num_pchs // len(self.height_starts_list) | |
w_start = self.width_starts_list[w_start_idx] * self.sf | |
w_end = w_start + self.pch_size * self.sf | |
h_start_idx = self.num_pchs % len(self.height_starts_list) | |
h_start = self.height_starts_list[h_start_idx] * self.sf | |
h_end = h_start + self.pch_size * self.sf | |
pch = self.im_ori[:, :, h_start:h_end, w_start:w_end,] | |
self.w_start, self.w_end = w_start, w_end | |
self.h_start, self.h_end = h_start, h_end | |
self.num_pchs += 1 | |
else: | |
raise StopIteration() | |
return pch, (h_start, h_end, w_start, w_end) | |
def update(self, pch_res, index_infos): | |
''' | |
Input: | |
pch_res: n x c x pch_size x pch_size, float | |
index_infos: (h_start, h_end, w_start, w_end) | |
''' | |
if index_infos is None: | |
w_start, w_end = self.w_start, self.w_end | |
h_start, h_end = self.h_start, self.h_end | |
else: | |
h_start, h_end, w_start, w_end = index_infos | |
self.im_res[:, :, h_start:h_end, w_start:w_end] += pch_res | |
self.pixel_count[:, :, h_start:h_end, w_start:w_end] += 1 | |
def gather(self): | |
assert torch.all(self.pixel_count != 0) | |
return self.im_res.div(self.pixel_count) | |
if __name__ == '__main__': | |
im = np.random.randn(64, 64, 3).astype(np.float32) | |
grad1 = imgrad(im)['grad'] | |
grad2 = imgrad_fft(im)['grad'] | |
error = np.abs(grad1 -grad2).max() | |
mean_error = np.abs(grad1 -grad2).mean() | |
print('The largest error is {:.2e}'.format(error)) | |
print('The mean error is {:.2e}'.format(mean_error)) | |