#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Power by Zongsheng Yue 2022-12-16 16:17:14
import os
import torch
import argparse
import numpy as np
import gradio as gr
from pathlib import Path
from einops import rearrange
from omegaconf import OmegaConf
from skimage import img_as_ubyte
from utils import util_opts
from utils import util_image
from utils import util_common
from sampler import DifIRSampler
from ResizeRight.resize_right import resize
from basicsr.utils.download_util import load_file_from_url
# setting configurations
cfg_path = 'configs/sample/iddpm_ffhq512_swinir.yaml'
configs = OmegaConf.load(cfg_path)
configs.aligned = False
# build the sampler for diffusion
sampler_dist = DifIRSampler(configs)
def predict(im_path, background_enhance, face_upsample, upscale, started_timesteps):
assert isinstance(im_path, str)
print(f'Processing image: {im_path}...')
configs.background_enhance = background_enhance
configs.face_upsample = face_upsample
started_timesteps = int(started_timesteps)
assert started_timesteps < int(configs.diffusion.params.timestep_respacing)
# prepare the checkpoint
if not Path(configs.model.ckpt_path).exists():
load_file_from_url(
url="https://github.com/zsyOAOA/DifFace/releases/download/V1.0/iddpm_ffhq512_ema500000.pth",
model_dir=str(Path(configs.model.ckpt_path).parent),
progress=True,
file_name=Path(configs.model.ckpt_path).name,
)
if not Path(configs.model_ir.ckpt_path).exists():
load_file_from_url(
url="https://github.com/zsyOAOA/DifFace/releases/download/V1.0/General_Face_ffhq512.pth",
model_dir=str(Path(configs.model_ir.ckpt_path).parent),
progress=True,
file_name=Path(configs.model_ir.ckpt_path).name,
)
# Load image
im_lq = util_image.imread(im_path, chn='bgr', dtype='uint8')
if upscale > 4:
upscale = 4 # avoid momory exceeded due to too large upscale
if upscale > 2 and min(im_lq.shape[:2])>1280:
upscale = 2 # avoid momory exceeded due to too large img resolution
configs.detection.upscale = int(upscale)
image_restored, face_restored, face_cropped = sampler_dist.sample_func_bfr_unaligned(
y0=im_lq,
start_timesteps=started_timesteps,
need_restoration=True,
draw_box=False,
)
restored_image_dir = Path('restored_output')
if not restored_image_dir.exists():
restored_image_dir.mkdir()
# save the whole image
save_path = restored_image_dir / Path(im_path).name
image_restored = util_image.bgr2rgb(image_restored)
util_image.imwrite(image_restored, save_path, chn='rgb', dtype_in='uint8')
return image_restored, str(save_path)
title = "DifFace: Blind Face Restoration with Diffused Error Contraction"
description = r"""
Official Gradio demo for DifFace: Blind Face Restoration with Diffused Error Contraction.
🔥 DifFace is a robust face restoration algorithm for old or corrupted photos.
"""
article = r"""
If DifFace is helpful for your work, please help to ⭐ the Github Repo. Thanks!
[![GitHub Stars](https://img.shields.io/github/stars/zsyOAOA/DifFace?affiliations=OWNER&color=green&style=social)](https://github.com/zsyOAOA/DifFace)
---
📝 **Citation**
If our work is useful for your research, please consider citing:
```bibtex
@article{yue2022difface,
title={DifFace: Blind Face Restoration with Diffused Error Contraction},
author={Yue, Zongsheng and Loy, Chen Change},
journal={arXiv preprint arXiv:2212.06512},
year={2022}
}
```
📋 **License**
This project is licensed under S-Lab License 1.0.
Redistribution and use for non-commercial purposes should follow this license.
📧 **Contact**
If you have any questions, please feel free to contact me via zsyzam@gmail.com.
![visitors](https://visitor-badge.laobi.icu/badge?page_id=zsyOAOA/DifFace)
"""
demo = gr.Interface(
predict,
inputs=[
gr.Image(type="filepath", label="Input"),
gr.Checkbox(value=True, label="Background_Enhance"),
gr.Checkbox(value=True, label="Face_Upsample"),
gr.Number(value=2, label="Rescaling_Factor (up to 4)"),
gr.Slider(1, 200, value=100, step=10, label='Realism-Fidelity Trade-off')
],
outputs=[
gr.Image(type="numpy", label="Output"),
gr.outputs.File(label="Download the output")
],
title=title,
description=description,
article=article,
examples=[
['./testdata/whole_imgs/00.jpg', True, True, 2, 100],
['./testdata/whole_imgs/01.jpg', True, True, 2, 100],
['./testdata/whole_imgs/04.jpg', True, True, 2, 100],
['./testdata/whole_imgs/05.jpg', True, True, 2, 100],
]
)
demo.queue(concurrency_count=4)
demo.launch()