from ctransformers import AutoModelForCausalLM from fastapi import FastAPI, Form from pydantic import BaseModel #Model loading llm = AutoModelForCausalLM.from_pretrained("TheBloke/Toppy-M-7B-GGUF", model_file="toppy-m-7b.Q5_K_M.gguf", model_type="mistral", context_length=4096, temperature=1, gpu_layers=50) # llm = AutoModelForCausalLM.from_pretrained("TheDrummer/Moistral-11B-v3-GGUF", # model_file="Moistral-11B-v3-Q6_K.gguf", # model_type="mistral", # context_length=4096, # temperature=0.6, # gpu_layers=50) #Pydantic object class validation(BaseModel): prompt: str #Fast API app = FastAPI() #Zephyr completion @app.post("/llm_on_gpu") async def stream(item: validation): system_prompt = 'Below is an instruction that describes a task. Write a response that appropriately completes the request.' E_INST = "" user, assistant = "<|user|>", "<|assistant|>" prompt = f"{system_prompt}{E_INST}\n{user}\n{item.prompt.strip()}{E_INST}\n{assistant}\n" return llm(prompt)