OOlajide commited on
Commit
3454d4e
·
1 Parent(s): 6402a0f

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +88 -0
app.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import pipeline
3
+
4
+ st.set_page_config(page_title="Common NLP Tasks")
5
+ st.title("Common NLP Tasks")
6
+ st.subheader("Use the menu on the left to select a NLP task to do (click on > if closed).")
7
+
8
+ expander = st.sidebar.expander('About')
9
+ expander.write("This web app allows you to perform common Natural Language Processing tasks, select a task below to get started.")
10
+
11
+ st.sidebar.header('What will you like to do?')
12
+ option = st.sidebar.radio('', ['Extractive question answering', 'Text summarization', 'Text generation', 'Sentiment analysis'])
13
+
14
+ @st.cache(show_spinner=False, allow_output_mutation=True)
15
+ def question_model():
16
+ question_answerer = pipeline("question-answering")
17
+ return question_answerer
18
+
19
+ @st.cache(show_spinner=False, allow_output_mutation=True)
20
+ def summarization_model():
21
+ summarizer = pipeline("summarization")
22
+ return summarizer
23
+
24
+ @st.cache(show_spinner=False, allow_output_mutation=True)
25
+ def generation_model():
26
+ generator = pipeline("text-generation")
27
+ return generator
28
+
29
+ @st.cache(show_spinner=False, allow_output_mutation=True)
30
+ def sentiment_model():
31
+ sentiment_analysis = pipeline("sentiment-analysis")
32
+ return sentiment_analysis
33
+
34
+ if option == 'Extractive question answering':
35
+ st.markdown("<h2 style='text-align: center; color:red;'>Extract answer from text</h2>", unsafe_allow_html=True)
36
+ sample_text = "sample text"
37
+ source = st.radio("How would you like to start? Choose an option below", ["I want to input some text", "I want to upload a file"])
38
+ if source == "I want to input some text":
39
+ context = st.text_area('Use the example below or input your own text in English (between 1,000 and 10,000 characters)', value=sample_text, max_chars=10000, height=330)
40
+ question = st.text_input(label='Enter your question')
41
+ button = st.button('Get answer')
42
+ if button:
43
+ question_answerer = question_model()
44
+ with st.spinner(text="Getting answer..."):
45
+ answer = question_answerer(context=context, question=question)
46
+ st.write(answer["answer"])
47
+ elif source == "I want to upload a file":
48
+ uploaded_file = st.file_uploader("Choose a .txt file to upload", type=["txt"])
49
+ question = st.text_input(label='Enter your question')
50
+ button = st.button('Get answer')
51
+ if button:
52
+ question_answerer = question_model()
53
+ with st.spinner(text="Getting answer..."):
54
+ answer = question_answerer(context=context, question=question)
55
+ st.write(answer["answer"])
56
+
57
+ elif option == 'Text summarization':
58
+ st.markdown("<h2 style='text-align: center; color:red;'>Summarize text</h2>", unsafe_allow_html=True)
59
+ sample_text = "sample text"
60
+ source = st.radio("How would you like to start? Choose an option below", ["I want to input some text", "I want to upload a file"])
61
+ if source == "I want to input some text":
62
+ text = st.text_area('Input a text in English (between 1,000 and 10,000 characters)', value=sample_text, max_chars=10000, height=330)
63
+ button = st.button('Get summary')
64
+ if button:
65
+ summarizer = summarization_model()
66
+ with st.spinner(text="Summarizing text..."):
67
+ summary = summarizer(text, max_length=130, min_length=30)
68
+ st.write(summary)
69
+
70
+ elif option == 'Text generation':
71
+ st.markdown("<h2 style='text-align: center; color:grey;'>Generate text</h2>", unsafe_allow_html=True)
72
+ text = st.text_input(label='Enter one line of text and let the NLP model generate the rest for you')
73
+ button = st.button('Generate text')
74
+ if button:
75
+ generator = generation_model()
76
+ with st.spinner(text="Generating text..."):
77
+ generated_text = generator(text, max_length=50)
78
+ st.write(generated_text[0]["generated_text"])
79
+
80
+ elif option == 'Sentiment analysis':
81
+ st.markdown("<h2 style='text-align: center; color:grey;'>Classify review</h2>", unsafe_allow_html=True)
82
+ text = st.text_input(label='Enter a sentence to get its sentiment analysis')
83
+ button = st.button('Get sentiment analysis')
84
+ if button:
85
+ sentiment_analysis = sentiment_model()
86
+ with st.spinner(text="Getting sentiment analysis..."):
87
+ sentiment = sentiment_analysis(text)
88
+ st.write(sentiment[0]["label"])