File size: 8,693 Bytes
e4e0162
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae1f197
 
 
 
c47b3e3
f29cff9
ae1f197
efb5973
838b0a0
ae1f197
f29cff9
c47b3e3
f29cff9
 
ae1f197
 
e4e0162
 
 
 
 
 
 
 
 
 
 
 
cd41564
 
e4e0162
0c404dc
cd41564
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c404dc
e4e0162
0c404dc
 
e4e0162
0c404dc
 
 
 
 
 
 
125deff
0c404dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4e0162
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c404dc
e4e0162
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c404dc
 
 
 
f29cff9
e4e0162
 
 
0c404dc
cd41564
 
 
 
0c404dc
cb13d58
 
e4e0162
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import gradio as gr
from gradio_client import Client
from huggingface_hub import InferenceClient
import random
#ss_client = Client("https://omnibus-html-image-current-tab.hf.space/")

models=[
    "google/gemma-7b",
    "google/gemma-7b-it",
    "google/gemma-2b",
    "google/gemma-2b-it"
    "meta-llama/Llama-2-7b-chat-hf",
    "codellama/CodeLlama-70b-Instruct-hf",
    "openchat/openchat-3.5-0106",
    "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
    "mistralai/Mixtral-8x7B-Instruct-v0.1",
    "mistralai/Mixtral-8x7B-Instruct-v0.2"
]
'''clients=[
InferenceClient(models[0]),
InferenceClient(models[1]),
InferenceClient(models[2]),
InferenceClient(models[3]),
]'''

client_z=[]


def load_models(inp):
    
    out_box=[gr.Chatbot(),gr.Chatbot(),gr.Chatbot(),gr.Chatbot()]
    print(type(inp))
    print(inp)
    print(models[inp[0]])
    client_z.clear()
    for z,ea in enumerate(inp):
        client_z.append(InferenceClient(models[inp[z]]))
        out_box[z]=(gr.update(label=models[inp[z]]))
    return out_box[0],out_box[1],out_box[2],out_box[3]


def format_prompt(message, history):
    prompt = ""
    if history:
        #<start_of_turn>userHow does the brain work?<end_of_turn><start_of_turn>model
        for user_prompt, bot_response in history:
            prompt += f"{user_prompt}\n"
            print(prompt)
            prompt += f"{bot_response}\n"
            print(prompt)
    prompt += f"<start_of_turn>user{message}<end_of_turn><start_of_turn>model"
    print(prompt)
    return prompt
mega_hist=[]


def chat_inf(system_prompt,prompt,history,client_choice,seed,temp,tokens,top_p,rep_p,hid_val):
    if len(client_choice)>=hid_val:
            
        #token max=8192
        client=client_z[int(hid_val)-1]
        
        if not mega_hist[hid_val-1]:
            mega_hist.append([])
            #history = []
            hist_len=0
        if mega_hist[hid_val-1]:
            hist_len=len(mega_hist[hid_val-1])
            print(hist_len)
        in_len=len(system_prompt+prompt)+hist_len
        print("\n#########"+str(in_len))
        if (in_len+tokens) > 8000:
            yield [(prompt,"Wait. I need to compress our Chat history...")]
            #history=compress_history(history,client_choice,seed,temp,tokens,top_p,rep_p)
            yield [(prompt,"History has been compressed, processing request...")]
                
        generate_kwargs = dict(
            temperature=temp,
            max_new_tokens=tokens,
            top_p=top_p,
            repetition_penalty=rep_p,
            do_sample=True,
            seed=seed,
        )
        #formatted_prompt=prompt   
        formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", mega_hist[hid_val-1])
        stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
        output = ""
            
        for response in stream:
            output += response.token.text
            yield [(prompt,output)]
        mega_hist[hid_val-1].append((prompt,output))
        yield mega_hist[hid_val-1]
    else:
        yield None




def chat_inf_og(system_prompt,prompt,history,client_choice,seed,temp,tokens,top_p,rep_p,hid_val):
    if len(client_choice)>=hid_val:
            
        #token max=8192
        client=client_z[int(hid_val)-1]
        
        if not history:
            history = []
            hist_len=0
        if history:
            hist_len=len(history)
            print(hist_len)
        in_len=len(system_prompt+prompt)+hist_len
        print("\n#########"+str(in_len))
        if (in_len+tokens) > 8000:
            yield [(prompt,"Wait. I need to compress our Chat history...")]
            #history=compress_history(history,client_choice,seed,temp,tokens,top_p,rep_p)
            yield [(prompt,"History has been compressed, processing request...")]
                
        generate_kwargs = dict(
            temperature=temp,
            max_new_tokens=tokens,
            top_p=top_p,
            repetition_penalty=rep_p,
            do_sample=True,
            seed=seed,
        )
        #formatted_prompt=prompt   
        formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
        stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
        output = ""
            
        for response in stream:
            output += response.token.text
            yield [(prompt,output)]
        history.append((prompt,output))
        yield history
    else:
        yield None
def clear_fn():
    return None,None,None
rand_val=random.randint(1,1111111111111111)
def check_rand(inp,val):
    if inp==True:
        return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1,1111111111111111))
    else:
        return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))

with gr.Blocks() as app:
    gr.HTML("""<center><h1 style='font-size:xx-large;'>Google Gemma Models</h1><br><h3>running on Huggingface Inference Client</h3><br><h7>EXPERIMENTAL""")
    with gr.Row():
        chat_a = gr.Chatbot(height=500)
        chat_b = gr.Chatbot(height=500)
    with gr.Row():
        chat_c = gr.Chatbot(height=500)
        chat_d = gr.Chatbot(height=500)
    with gr.Group():
        with gr.Row():
            with gr.Column(scale=3):
                inp = gr.Textbox(label="Prompt")
                sys_inp = gr.Textbox(label="System Prompt (optional)")
                with gr.Row():
                    with gr.Column(scale=2):
                        btn = gr.Button("Chat")
                    with gr.Column(scale=1):
                        with gr.Group():
                            stop_btn=gr.Button("Stop")
                            clear_btn=gr.Button("Clear")                
                client_choice=gr.Dropdown(label="Models",type='index',choices=[c for c in models],max_choices=4,multiselect=True,interactive=True)

            with gr.Column(scale=1):
                with gr.Group():
                    rand = gr.Checkbox(label="Random Seed", value=True)
                    seed=gr.Slider(label="Seed", minimum=1, maximum=1111111111111111,step=1, value=rand_val)
                    tokens = gr.Slider(label="Max new tokens",value=3840,minimum=0,maximum=8000,step=64,interactive=True, visible=True,info="The maximum number of tokens")
                    temp=gr.Slider(label="Temperature",step=0.01, minimum=0.01, maximum=1.0, value=0.9)
                    top_p=gr.Slider(label="Top-P",step=0.01, minimum=0.01, maximum=1.0, value=0.9)
                    rep_p=gr.Slider(label="Repetition Penalty",step=0.1, minimum=0.1, maximum=2.0, value=1.0)
        with gr.Accordion(label="Screenshot",open=False):
            with gr.Row():
                with gr.Column(scale=3):
                    im_btn=gr.Button("Screenshot")
                    img=gr.Image(type='filepath')
                with gr.Column(scale=1):
                    with gr.Row():
                        im_height=gr.Number(label="Height",value=5000)
                        im_width=gr.Number(label="Width",value=500)
                    wait_time=gr.Number(label="Wait Time",value=3000)
                    theme=gr.Radio(label="Theme", choices=["light","dark"],value="light")
                    chatblock=gr.Dropdown(label="Chatblocks",info="Choose specific blocks of chat",choices=[c for c in range(1,40)],multiselect=True)
    hid1=gr.Number(value=1)        
    hid2=gr.Number(value=2)        
    hid3=gr.Number(value=3)        
    hid4=gr.Number(value=4)        
    client_choice.change(load_models,client_choice,[chat_a,chat_b,chat_c,chat_d])

    #im_go=im_btn.click(get_screenshot,[chat_b,im_height,im_width,chatblock,theme,wait_time],img)
    #chat_sub=inp.submit(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p],chat_b)
    
    go1=btn.click(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p,hid1],chat_a)
    go2=btn.click(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p,hid2],chat_b)
    go3=btn.click(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p,hid3],chat_c)
    go4=btn.click(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p,hid4],chat_d)
    
    stop_btn.click(None,None,None,cancels=[go1,go2,go3,go4])
    clear_btn.click(clear_fn,None,[inp,sys_inp,chat_a,chat_b,chat_c,chat_d])
app.queue(default_concurrency_limit=10).launch()