from flask import Flask, request, render_template, jsonify import torch from nltk.tokenize import word_tokenize from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer, T5Tokenizer, T5ForConditionalGeneration, MBartForConditionalGeneration, MBart50TokenizerFast from LDict import find_legal_terms, legal_terms_lower import nltk import re,os, logging # Set environment variables for writable directories os.environ["TRANSFORMERS_CACHE"] = "/tmp/transformers_cache" nltk.data.path.append("/tmp/nltk_data") logging.basicConfig(level=logging.ERROR) # Download necessary NLTK data nltk.download('punkt', download_dir="/tmp/nltk_data") nltk.download('punkt_tab', download_dir="/tmp/nltk_data") app = Flask(__name__) device = "cuda" if torch.cuda.is_available() else "cpu" # device = "mps" if torch.backends.mps.is_available() else "cpu" #Method 1 model pegasus_ckpt = "google/pegasus-cnn_dailymail" tokenizer_pegasus = AutoTokenizer.from_pretrained(pegasus_ckpt) model_pegasus = AutoModelForSeq2SeqLM.from_pretrained(pegasus_ckpt).to(device) # Method 2 model port_tokenizer= AutoTokenizer.from_pretrained("stjiris/t5-portuguese-legal-summarization") model_port = AutoModelForSeq2SeqLM.from_pretrained("stjiris/t5-portuguese-legal-summarization").to(device) #paraphrase t5_ckpt = "t5-base" tokenizer_t5 = T5Tokenizer.from_pretrained(t5_ckpt) model_t5 = T5ForConditionalGeneration.from_pretrained(t5_ckpt).to(device) #Translation Model mbart_ckpt = "facebook/mbart-large-50-one-to-many-mmt" tokenizer_mbart = MBart50TokenizerFast.from_pretrained(mbart_ckpt,src_lang="en_XX") model_mbart = MBartForConditionalGeneration.from_pretrained(mbart_ckpt).to(device) def simplify_text(input_text): matches = find_legal_terms(input_text) tokens = word_tokenize(input_text) simplified_tokens = [f"{token} ({legal_terms_lower[token.lower()]})" if token.lower() in matches else token for token in tokens] return ' '.join(simplified_tokens) def remove_parentheses(text): p1 = re.sub(r"[()]", "", text) p2 = re.sub(r"\s+", " ", p1).strip() p3 = re.sub(r"\b(the|a|an)\s+\1\b", r"\1", p2, flags=re.IGNORECASE) return p3 def summarize_text(text, method): if method == "method2": #Sumarry Model2 inputs_legal = port_tokenizer(text, max_length=1024, truncation=True, return_tensors="pt") summary_ids_legal = model_port.generate(inputs_legal["input_ids"], max_length=250, num_beams=4, early_stopping=True) Summarized_method2 = port_tokenizer.decode(summary_ids_legal[0], skip_special_tokens=True) cleaned_summary2 = remove_parentheses(Summarized_method2) #Paraphrase p_inputs = tokenizer_t5.encode(cleaned_summary2, return_tensors="pt", max_length=512, truncation=True) p_summary_ids = model_t5.generate(p_inputs, max_length=150, min_length=50, length_penalty=2.0, num_beams=4, early_stopping=True) method2 = tokenizer_t5.decode(p_summary_ids[0], skip_special_tokens=True) return method2 elif method == "method1": summarization_pipeline = pipeline('summarization', model=model_pegasus, tokenizer=tokenizer_pegasus, device=0 if device == "cuda" else -1) method1 = summarization_pipeline(text, max_length=100, min_length=30, truncation=True)[0]['summary_text'] cleaned_summary1 = remove_parentheses(method1) return cleaned_summary1 def translate_to_hindi(text): inputs = tokenizer_mbart([text], return_tensors="pt", padding=True, truncation=True) translated_tokens = model_mbart.generate(**inputs, forced_bos_token_id=tokenizer_mbart.lang_code_to_id["hi_IN"]) # Select the first sequence from the generated tokens translation = tokenizer_mbart.decode(translated_tokens[0], skip_special_tokens=True) return translation @app.route('/', methods=['GET', 'POST']) def index(): if request.method == 'POST': try: input_text = request.form['input_text'] method = request.form['method'] simplified_text = simplify_text(input_text) summarized_text = summarize_text(simplified_text, method) return jsonify({ "summarized_text": summarized_text, }) except Exception as e: logging.error(f"Error occurred: {e}", exc_info=True) return jsonify({"error": str(e)}), 500 return render_template('index.html') @app.route('/translate', methods=['POST']) def translate(): try: data = request.get_json() text = data['text'] translated_text = translate_to_hindi(text) return jsonify({ "translated_text": translated_text}) except Exception as e: logging.error(f"Error occurred during translation: {e}", exc_info=True) return jsonify({"error": str(e)}), 500 if __name__ == '__main__': app.run(port=5003)