File size: 10,419 Bytes
8576e15
a70a2ab
19d239a
2b340e8
8576e15
98f6a5e
ba52fb4
98f6a5e
8576e15
2b340e8
 
dd6553b
2b340e8
 
aef3ddc
19d239a
dd6553b
8576e15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a122170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8576e15
a122170
 
 
dfcffbf
2b340e8
3369adf
dfcffbf
 
 
 
 
 
 
 
 
a122170
 
 
 
 
 
2b340e8
3369adf
 
 
2b340e8
a122170
8576e15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
724fd52
8576e15
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import streamlit as st
import re,torch
import json,os
from transformers import AutoModelForCausalLM, AutoTokenizer
from datetime import datetime
from huggingface_hub import login

login(token=os.getenv("TOKEN"))

# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
    "google/gemma-2b",
    torch_dtype="auto",
    device_map="auto",
)

tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
if 'recipe' not in st.session_state:
    st.session_state.recipe = None

if 'recipe_saved' not in st.session_state:
    st.session_state.recipe_saved = None

if 'user_direction' not in st.session_state:
    st.session_state.user_direction = None

if 'serving_size' not in st.session_state:
    st.session_state.serving_size = 2

if 'selected_difficulty' not in st.session_state:
    st.session_state.selected_difficulty = "Quick & Easy"

if 'exclusions' not in st.session_state:
    st.session_state.exclusions = None
    
def create_detailed_prompt(user_direction, exclusions, serving_size, difficulty):
    if difficulty == "Quick & Easy":
        prompt = (
            f"Provide a 'Quick and Easy' recipe for {user_direction} that excludes {exclusions} and has a serving size of {serving_size}. "
            f"It should require as few ingredients as possible and should be ready in as little time as possible. "
            f"The steps should be simple, and the ingredients should be commonly found in a household pantry. "
            f"Provide a detailed ingredient list and step-by-step guide that explains the instructions to prepare in detail."
        )
    elif difficulty == "Intermediate":
        prompt = (
            f"Provide a classic recipe for {user_direction} that excludes {exclusions} and has a serving size of {serving_size}. "
            f"The recipe should offer a bit of a cooking challenge but should not require professional skills. "
            f"The recipe should feature traditional ingredients and techniques that are authentic to its cuisine. "
            f"Provide a detailed ingredient list and step-by-step guide that explains the instructions to prepare in detail."
        )
    elif difficulty == "Professional":
        prompt = (
            f"Provide a advanced recipe for {user_direction} that excludes {exclusions} and has a serving size of {serving_size}. "
            f"The recipe should push the boundaries of culinary arts, integrating unique ingredients, advanced cooking techniques, and innovative presentations. "
            f"The recipe should be able to be served at a high-end restaurant or would impress at a gourmet food competition. "
            f"Provide a detailed ingredient list and step-by-step guide that explains the instructions to prepare in detail."
        )
    return prompt

def generate_recipe(user_inputs):
    with st.spinner('Building the perfect recipe...'):
        # provide_recipe_schema = {
        #     'type': 'function',
        #     'function': {
        #         'name': 'provide_recipe',
        #         'description': 'Provides a detailed recipe strictly adhering to the user input/specifications, especially ingredient exclusions and the recipe difficulty',
        #         'parameters': {
        #             'type': 'object',
        #             'properties': {
        #                 'name': {
        #                     'type': 'string',
        #                     'description': 'A creative name for the recipe'
        #                 },
        #                 'description': {
        #                     'type': 'string',
        #                     'description': 'a brief one-sentence description of the provided recipe'
        #                 },
        #                 'ingredients': {
        #                     'type': 'array',
        #                     'items': {
        #                         'type': 'object',
        #                         'properties': {
        #                             'name': {
        #                                 'type': 'string',
        #                                 'description': 'Quantity and name of the ingredient'
        #                             }
        #                         }
        #                     }
        #                 },
        #                 'instructions': {
        #                     'type': 'array',
        #                     'items': {
        #                         'type': 'object',
        #                         'properties': {
        #                             'step_number': {
        #                                 'type': 'number',
        #                                 'description': 'The sequence number of this step'
        #                             },
        #                             'instruction': {
        #                                 'type': 'string',
        #                                 'description': 'Detailed description of what to do in this step'
        #                             }
        #                         }
        #                     }
        #                 }
        #             },
        #             'required': [
        #                 'name',
        #                 'description',
        #                 'ingredients',
        #                 'instructions'
        #             ]
        #         }
        #     }
        # }
        prompt = create_detailed_prompt(user_inputs['user_direction'], user_inputs['exclusions'], user_inputs['serving_size'], user_inputs['difficulty'])
        # messages = [{"role": "user", "content": prompt}]
        # tool_section = "\n".join([f"{tool['function']['name']}({json.dumps(tool['function']['parameters'])})" for tool in [provide_recipe_schema]])
        # text = f"{prompt}\n\nTools:\n{tool_section}"
        
        # Tokenize and move to the correct device
        model_inputs = tokenizer(prompt, return_tensors="pt")
        # text = tokenizer.apply_chat_template(
        #     messages,
        #     tokenize=False,
        #     add_generation_prompt=True,
        #     tools=[provide_recipe_schema]
        # )

        # Tokenize and move to the correct device
        # model_inputs = tokenizer([text], return_tensors="pt")
        # torch.cuda.empty_cache()
        # with torch.no_grad():
        generated_ids = model.generate(
            **model_inputs,
            # max_new_tokens=512,
        )

        # generated_ids = [
        #     output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
        # ]

        st.session_state.recipe = tokenizer.decode(generated_ids[0])
        st.session_state.recipe_saved = False
        
def clear_inputs():
    st.session_state.user_direction = None
    st.session_state.exclusions = None
    st.session_state.serving_size = 2
    st.session_state.selected_difficulty = "Quick & Easy"
    
st.title("Let's get cooking")
st.session_state.user_direction = st.text_area(
    "What do you want to cook? Describe anything - a dish, cuisine, event, or vibe.",
    value = st.session_state.user_direction,
    placeholder="quick snack, asian style bowl with either noodles or rice, something italian",
    )

st.session_state.serving_size = st.number_input(
    "How many servings would you like to cook?",
    min_value=1,
    max_value=100,
    value=st.session_state.serving_size,
    step=1
)

difficulty_dictionary = {
    "Quick & Easy": {
        "description": "Easy recipes with straightforward instructions. Ideal for beginners or those seeking quick and simple cooking.",
    },
    "Intermediate": {
        "description": "Recipes with some intricate steps that invite a little challenge. Perfect for regular cooks wanting to expand their repertoire with new ingredients and techniques.",
    },
    "Professional": {
        "description": "Complex recipes that demand a high level of skill and precision. Suited for seasoned cooks aspiring to professional-level sophistication and creativity.",
    }
}

st.session_state.selected_difficulty = st.radio(
    "Choose a difficulty level for your recipe.",
    [
        list(difficulty_dictionary.keys())[0], 
        list(difficulty_dictionary.keys())[1], 
        list(difficulty_dictionary.keys())[2]
    ],
    captions = [
        difficulty_dictionary["Quick & Easy"]["description"], 
        difficulty_dictionary["Intermediate"]["description"],
        difficulty_dictionary["Professional"]["description"]
    ],
    index=list(difficulty_dictionary).index(st.session_state.selected_difficulty)
)

st.session_state.exclusions = st.text_area(
    "Any ingredients you want to exclude?",
    value = st.session_state.exclusions,
    placeholder="gluten, dairy, nuts, cilantro",
    )

fancy_exclusions =""

if st.session_state.selected_difficulty == "Professional":
    exclude_fancy = st.checkbox(
        "Exclude cliche professional ingredients? (gold leaf, truffle, edible flowers, microgreens)", 
        value=True)
    fancy_exclusions = "gold leaf, truffle, edible flowers, microgreens, gold dust"
      

user_inputs = {
    "user_direction" : st.session_state.user_direction,
    "exclusions": f"{st.session_state.exclusions}, {fancy_exclusions}",
    "serving_size": st.session_state.serving_size,
    "difficulty": st.session_state.selected_difficulty
}
button_cols_submit = st.columns([1, 1, 4])
with button_cols_submit[0]:
    st.button(label='Submit', on_click=generate_recipe, kwargs=dict(user_inputs=user_inputs), type="primary", use_container_width=True)
with button_cols_submit[1]:
    st.button(label='Reset', on_click=clear_inputs, type="secondary", use_container_width=True)
with button_cols_submit[2]:
    st.empty()
    
if st.session_state.recipe is not None:
    st.divider()
    print(st.session_state.recipe)
    recipe = json.loads(st.session_state.recipe)
    recipe_md = ''
    recipe_md += f'# {recipe["name"]} \n\n'
    recipe_md += f'{recipe["description"]} \n\n'
    recipe_md += '## Ingredients: \n'
    for ingredient in recipe['ingredients']:
        recipe_md += f"- {ingredient['name']} \n"
    recipe_md += '\n## Instructions:\n'
    for instruction in recipe['instructions']:
        recipe_md += f"{instruction['step_number']}. {instruction['instruction']} \n"
    recipe['md'] = recipe_md
    recipe['timestamp'] = str(datetime.now())
    st.markdown(recipe_md)
    st.write("")