Spaces:
Sleeping
Sleeping
File size: 10,052 Bytes
8576e15 a70a2ab 19d239a 2b340e8 8576e15 ba52fb4 8576e15 2b340e8 72e6cc9 2b340e8 aef3ddc 19d239a 72e6cc9 8576e15 3e8ab70 8576e15 3e8ab70 8576e15 3e8ab70 8576e15 2b340e8 3e8ab70 8576e15 2b340e8 11d500b 2b340e8 8576e15 724fd52 8576e15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import streamlit as st
import re,torch
import json,os
from transformers import AutoModelForCausalLM, AutoTokenizer
from datetime import datetime
from huggingface_hub import login
login(token=os.getenv("TOKEN"))
# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
"mistralai/Mistral-7B-Instruct-v0.2",
torch_dtype="auto",
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
if 'recipe' not in st.session_state:
st.session_state.recipe = None
if 'recipe_saved' not in st.session_state:
st.session_state.recipe_saved = None
if 'user_direction' not in st.session_state:
st.session_state.user_direction = None
if 'serving_size' not in st.session_state:
st.session_state.serving_size = 2
if 'selected_difficulty' not in st.session_state:
st.session_state.selected_difficulty = "Quick & Easy"
if 'exclusions' not in st.session_state:
st.session_state.exclusions = None
def create_detailed_prompt(user_direction, exclusions, serving_size, difficulty):
if difficulty == "Quick & Easy":
prompt = (
f"Provide a 'Quick and Easy' recipe for {user_direction} that excludes {exclusions} and has a serving size of {serving_size}. "
f"It should require as few ingredients as possible and should be ready in as little time as possible. "
f"The steps should be simple, and the ingredients should be commonly found in a household pantry. "
f"Provide a detailed ingredient list and step-by-step guide that explains the instructions to prepare in detail."
)
elif difficulty == "Intermediate":
prompt = (
f"Provide a classic recipe for {user_direction} that excludes {exclusions} and has a serving size of {serving_size}. "
f"The recipe should offer a bit of a cooking challenge but should not require professional skills. "
f"The recipe should feature traditional ingredients and techniques that are authentic to its cuisine. "
f"Provide a detailed ingredient list and step-by-step guide that explains the instructions to prepare in detail."
)
elif difficulty == "Professional":
prompt = (
f"Provide a advanced recipe for {user_direction} that excludes {exclusions} and has a serving size of {serving_size}. "
f"The recipe should push the boundaries of culinary arts, integrating unique ingredients, advanced cooking techniques, and innovative presentations. "
f"The recipe should be able to be served at a high-end restaurant or would impress at a gourmet food competition. "
f"Provide a detailed ingredient list and step-by-step guide that explains the instructions to prepare in detail."
)
return prompt
def generate_recipe(user_inputs):
with st.spinner('Building the perfect recipe...'):
provide_recipe_schema = {
'type': 'function',
'function': {
'name': 'provide_recipe',
'description': 'Provides a detailed recipe strictly adhering to the user input/specifications, especially ingredient exclusions and the recipe difficulty',
'parameters': {
'type': 'object',
'properties': {
'name': {
'type': 'string',
'description': 'A creative name for the recipe'
},
'description': {
'type': 'string',
'description': 'a brief one-sentence description of the provided recipe'
},
'ingredients': {
'type': 'array',
'items': {
'type': 'object',
'properties': {
'name': {
'type': 'string',
'description': 'Quantity and name of the ingredient'
}
}
}
},
'instructions': {
'type': 'array',
'items': {
'type': 'object',
'properties': {
'step_number': {
'type': 'number',
'description': 'The sequence number of this step'
},
'instruction': {
'type': 'string',
'description': 'Detailed description of what to do in this step'
}
}
}
}
},
'required': [
'name',
'description',
'ingredients',
'instructions'
]
}
}
}
prompt = create_detailed_prompt(user_inputs['user_direction'], user_inputs['exclusions'], user_inputs['serving_size'], user_inputs['difficulty'])
messages = [{"role": "user", "content": prompt}]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
tools=[provide_recipe_schema]
)
# Tokenize and move to the correct device
model_inputs = tokenizer([text], return_tensors="pt")
torch.cuda.empty_cache()
with torch.no_grad():
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=1024,
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
st.session_state.recipe = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
st.session_state.recipe_saved = False
def clear_inputs():
st.session_state.user_direction = None
st.session_state.exclusions = None
st.session_state.serving_size = 2
st.session_state.selected_difficulty = "Quick & Easy"
st.title("Let's get cooking")
st.session_state.user_direction = st.text_area(
"What do you want to cook? Describe anything - a dish, cuisine, event, or vibe.",
value = st.session_state.user_direction,
placeholder="quick snack, asian style bowl with either noodles or rice, something italian",
)
st.session_state.serving_size = st.number_input(
"How many servings would you like to cook?",
min_value=1,
max_value=100,
value=st.session_state.serving_size,
step=1
)
difficulty_dictionary = {
"Quick & Easy": {
"description": "Easy recipes with straightforward instructions. Ideal for beginners or those seeking quick and simple cooking.",
},
"Intermediate": {
"description": "Recipes with some intricate steps that invite a little challenge. Perfect for regular cooks wanting to expand their repertoire with new ingredients and techniques.",
},
"Professional": {
"description": "Complex recipes that demand a high level of skill and precision. Suited for seasoned cooks aspiring to professional-level sophistication and creativity.",
}
}
st.session_state.selected_difficulty = st.radio(
"Choose a difficulty level for your recipe.",
[
list(difficulty_dictionary.keys())[0],
list(difficulty_dictionary.keys())[1],
list(difficulty_dictionary.keys())[2]
],
captions = [
difficulty_dictionary["Quick & Easy"]["description"],
difficulty_dictionary["Intermediate"]["description"],
difficulty_dictionary["Professional"]["description"]
],
index=list(difficulty_dictionary).index(st.session_state.selected_difficulty)
)
st.session_state.exclusions = st.text_area(
"Any ingredients you want to exclude?",
value = st.session_state.exclusions,
placeholder="gluten, dairy, nuts, cilantro",
)
fancy_exclusions =""
if st.session_state.selected_difficulty == "Professional":
exclude_fancy = st.checkbox(
"Exclude cliche professional ingredients? (gold leaf, truffle, edible flowers, microgreens)",
value=True)
fancy_exclusions = "gold leaf, truffle, edible flowers, microgreens, gold dust"
user_inputs = {
"user_direction" : st.session_state.user_direction,
"exclusions": f"{st.session_state.exclusions}, {fancy_exclusions}",
"serving_size": st.session_state.serving_size,
"difficulty": st.session_state.selected_difficulty
}
button_cols_submit = st.columns([1, 1, 4])
with button_cols_submit[0]:
st.button(label='Submit', on_click=generate_recipe, kwargs=dict(user_inputs=user_inputs), type="primary", use_container_width=True)
with button_cols_submit[1]:
st.button(label='Reset', on_click=clear_inputs, type="secondary", use_container_width=True)
with button_cols_submit[2]:
st.empty()
if st.session_state.recipe is not None:
st.divider()
print(st.session_state.recipe)
recipe = json.loads(st.session_state.recipe)
recipe_md = ''
recipe_md += f'# {recipe["name"]} \n\n'
recipe_md += f'{recipe["description"]} \n\n'
recipe_md += '## Ingredients: \n'
for ingredient in recipe['ingredients']:
recipe_md += f"- {ingredient['name']} \n"
recipe_md += '\n## Instructions:\n'
for instruction in recipe['instructions']:
recipe_md += f"{instruction['step_number']}. {instruction['instruction']} \n"
recipe['md'] = recipe_md
recipe['timestamp'] = str(datetime.now())
st.markdown(recipe_md)
st.write("")
|