Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,15 @@
|
|
1 |
import streamlit as st
|
2 |
-
import re,torch
|
3 |
-
import json,os
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
from datetime import datetime
|
6 |
-
from huggingface_hub import login
|
|
|
7 |
|
8 |
login(token=os.getenv("TOKEN"))
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
"google/gemma-2b",
|
13 |
-
torch_dtype="auto",
|
14 |
-
device_map="auto",
|
15 |
-
)
|
16 |
|
17 |
-
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
|
18 |
if 'recipe' not in st.session_state:
|
19 |
st.session_state.recipe = None
|
20 |
|
@@ -59,88 +54,18 @@ def create_detailed_prompt(user_direction, exclusions, serving_size, difficulty)
|
|
59 |
|
60 |
def generate_recipe(user_inputs):
|
61 |
with st.spinner('Building the perfect recipe...'):
|
62 |
-
# provide_recipe_schema = {
|
63 |
-
# 'type': 'function',
|
64 |
-
# 'function': {
|
65 |
-
# 'name': 'provide_recipe',
|
66 |
-
# 'description': 'Provides a detailed recipe strictly adhering to the user input/specifications, especially ingredient exclusions and the recipe difficulty',
|
67 |
-
# 'parameters': {
|
68 |
-
# 'type': 'object',
|
69 |
-
# 'properties': {
|
70 |
-
# 'name': {
|
71 |
-
# 'type': 'string',
|
72 |
-
# 'description': 'A creative name for the recipe'
|
73 |
-
# },
|
74 |
-
# 'description': {
|
75 |
-
# 'type': 'string',
|
76 |
-
# 'description': 'a brief one-sentence description of the provided recipe'
|
77 |
-
# },
|
78 |
-
# 'ingredients': {
|
79 |
-
# 'type': 'array',
|
80 |
-
# 'items': {
|
81 |
-
# 'type': 'object',
|
82 |
-
# 'properties': {
|
83 |
-
# 'name': {
|
84 |
-
# 'type': 'string',
|
85 |
-
# 'description': 'Quantity and name of the ingredient'
|
86 |
-
# }
|
87 |
-
# }
|
88 |
-
# }
|
89 |
-
# },
|
90 |
-
# 'instructions': {
|
91 |
-
# 'type': 'array',
|
92 |
-
# 'items': {
|
93 |
-
# 'type': 'object',
|
94 |
-
# 'properties': {
|
95 |
-
# 'step_number': {
|
96 |
-
# 'type': 'number',
|
97 |
-
# 'description': 'The sequence number of this step'
|
98 |
-
# },
|
99 |
-
# 'instruction': {
|
100 |
-
# 'type': 'string',
|
101 |
-
# 'description': 'Detailed description of what to do in this step'
|
102 |
-
# }
|
103 |
-
# }
|
104 |
-
# }
|
105 |
-
# }
|
106 |
-
# },
|
107 |
-
# 'required': [
|
108 |
-
# 'name',
|
109 |
-
# 'description',
|
110 |
-
# 'ingredients',
|
111 |
-
# 'instructions'
|
112 |
-
# ]
|
113 |
-
# }
|
114 |
-
# }
|
115 |
-
# }
|
116 |
prompt = create_detailed_prompt(user_inputs['user_direction'], user_inputs['exclusions'], user_inputs['serving_size'], user_inputs['difficulty'])
|
117 |
-
# messages = [{"role": "user", "content": prompt}]
|
118 |
-
# tool_section = "\n".join([f"{tool['function']['name']}({json.dumps(tool['function']['parameters'])})" for tool in [provide_recipe_schema]])
|
119 |
-
# text = f"{prompt}\n\nTools:\n{tool_section}"
|
120 |
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
# tools=[provide_recipe_schema]
|
128 |
-
# )
|
129 |
-
|
130 |
-
# Tokenize and move to the correct device
|
131 |
-
# model_inputs = tokenizer([text], return_tensors="pt")
|
132 |
-
# torch.cuda.empty_cache()
|
133 |
-
# with torch.no_grad():
|
134 |
-
generated_ids = model.generate(
|
135 |
-
**model_inputs,
|
136 |
-
# max_new_tokens=512,
|
137 |
)
|
138 |
|
139 |
-
|
140 |
-
|
141 |
-
# ]
|
142 |
-
|
143 |
-
st.session_state.recipe = tokenizer.decode(generated_ids[0])
|
144 |
st.session_state.recipe_saved = False
|
145 |
|
146 |
def clear_inputs():
|
@@ -197,7 +122,7 @@ st.session_state.exclusions = st.text_area(
|
|
197 |
placeholder="gluten, dairy, nuts, cilantro",
|
198 |
)
|
199 |
|
200 |
-
fancy_exclusions =""
|
201 |
|
202 |
if st.session_state.selected_difficulty == "Professional":
|
203 |
exclude_fancy = st.checkbox(
|
|
|
1 |
import streamlit as st
|
2 |
+
import re, torch, json, os
|
|
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
from datetime import datetime
|
5 |
+
from huggingface_hub import login, InferenceClient
|
6 |
+
import random
|
7 |
|
8 |
login(token=os.getenv("TOKEN"))
|
9 |
|
10 |
+
# Initialize the inference client for the Mixtral model
|
11 |
+
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
|
|
|
|
|
|
|
|
12 |
|
|
|
13 |
if 'recipe' not in st.session_state:
|
14 |
st.session_state.recipe = None
|
15 |
|
|
|
54 |
|
55 |
def generate_recipe(user_inputs):
|
56 |
with st.spinner('Building the perfect recipe...'):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
prompt = create_detailed_prompt(user_inputs['user_direction'], user_inputs['exclusions'], user_inputs['serving_size'], user_inputs['difficulty'])
|
|
|
|
|
|
|
58 |
|
59 |
+
generate_kwargs = dict(
|
60 |
+
temperature=0.9,
|
61 |
+
max_new_tokens=1000,
|
62 |
+
top_p=0.9,
|
63 |
+
repetition_penalty=1.0,
|
64 |
+
do_sample=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
)
|
66 |
|
67 |
+
response = client.text_generation(prompt, **generate_kwargs)
|
68 |
+
st.session_state.recipe = response['generated_text']
|
|
|
|
|
|
|
69 |
st.session_state.recipe_saved = False
|
70 |
|
71 |
def clear_inputs():
|
|
|
122 |
placeholder="gluten, dairy, nuts, cilantro",
|
123 |
)
|
124 |
|
125 |
+
fancy_exclusions = ""
|
126 |
|
127 |
if st.session_state.selected_difficulty == "Professional":
|
128 |
exclude_fancy = st.checkbox(
|