Spaces:
Sleeping
Sleeping
OmPrakashSingh1704
commited on
Commit
•
e81c2f0
1
Parent(s):
bf24bdd
Update app.py
Browse files
app.py
CHANGED
@@ -34,6 +34,25 @@ mode = st.toggle(label="MART")
|
|
34 |
if 'ind' not in st.session_state:
|
35 |
st.session_state.ind = []
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
@st.cache_resource(show_spinner=False)
|
38 |
def pygwalerapp(df):
|
39 |
return StreamlitRenderer(df)
|
@@ -48,9 +67,9 @@ def get_recommendations(user_description, count_vectorizer, count_matrix):
|
|
48 |
cosine_similarities = cosine_similarity(user_vector, count_matrix).flatten()
|
49 |
similar_indices = cosine_similarities.argsort()[::-1]
|
50 |
return similar_indices
|
51 |
-
@st.
|
52 |
def show_recipe(recipe):
|
53 |
-
with
|
54 |
name_and_dis = f'# {recipe["name"]}\n\n'
|
55 |
name_and_dis += f'{recipe["description"]}\n\n'
|
56 |
ingredients = '## Ingredients:\n'
|
@@ -59,21 +78,22 @@ def show_recipe(recipe):
|
|
59 |
instructions += f"{instruction['step_number']}. {instruction['instruction']}\n"
|
60 |
|
61 |
st.write(name_and_dis)
|
62 |
-
col01, col02 =
|
63 |
with col01:
|
64 |
-
cont =
|
65 |
-
cont
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
73 |
with col02:
|
74 |
-
cont =
|
75 |
-
cont.write(instructions)
|
76 |
-
@st.
|
77 |
def cooking():
|
78 |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
79 |
|
@@ -120,7 +140,7 @@ def cooking():
|
|
120 |
return prompt
|
121 |
|
122 |
def generate_recipe(user_inputs):
|
123 |
-
with
|
124 |
prompt = create_detailed_prompt(user_inputs['user_direction'], user_inputs['exclusions'],
|
125 |
user_inputs['serving_size'], user_inputs['difficulty'])
|
126 |
|
@@ -200,15 +220,15 @@ def cooking():
|
|
200 |
st.session_state.recipe = None
|
201 |
|
202 |
st.title("Let's get cooking")
|
203 |
-
col1, col2 =
|
204 |
with col1:
|
205 |
-
st.session_state.user_direction =
|
206 |
"What do you want to cook? Describe anything - a dish, cuisine, event, or vibe.",
|
207 |
value=st.session_state.user_direction,
|
208 |
placeholder="quick snack, asian style bowl with either noodles or rice, something italian",
|
209 |
)
|
210 |
with col2:
|
211 |
-
st.session_state.serving_size =
|
212 |
"How many servings would you like to cook?",
|
213 |
min_value=1,
|
214 |
max_value=100,
|
@@ -267,11 +287,11 @@ def cooking():
|
|
267 |
|
268 |
button_cols_submit = st.columns([1, 1, 4])
|
269 |
with button_cols_submit[0]:
|
270 |
-
|
271 |
type="primary",
|
272 |
use_container_width=True)
|
273 |
with button_cols_submit[1]:
|
274 |
-
|
275 |
with button_cols_submit[2]:
|
276 |
st.empty()
|
277 |
|
@@ -305,14 +325,14 @@ def cooking():
|
|
305 |
disable_button = False
|
306 |
button_cols_save = st.columns([1, 1, 4])
|
307 |
with button_cols_save[0]:
|
308 |
-
|
309 |
with button_cols_save[1]:
|
310 |
st.empty()
|
311 |
with button_cols_save[2]:
|
312 |
st.empty()
|
313 |
if st.session_state.recipe_saved == True:
|
314 |
st.success("Recipe Saved!")
|
315 |
-
@st.
|
316 |
def rsaved():
|
317 |
st.title("Saved Recipes")
|
318 |
def load_saved_recipes_from_pickle(directory_path):
|
@@ -346,7 +366,7 @@ def rsaved():
|
|
346 |
elif user_sort == 'Random':
|
347 |
recipes.sort(key=lambda x: x['file'])
|
348 |
with cols[0]:
|
349 |
-
user_search =
|
350 |
st.write("") # just some space
|
351 |
|
352 |
if user_search != "":
|
@@ -356,15 +376,15 @@ def rsaved():
|
|
356 |
show_recipe(filtered_recipes[0])
|
357 |
else:
|
358 |
st.write("No recipe found.")
|
359 |
-
@st.
|
360 |
def mart():
|
361 |
st.markdown("# :eyes: PEOPLE SEARCHING FOR...")
|
362 |
print(st.session_state.ind)
|
363 |
flattened_indices = list(set(index for sublist in st.session_state.ind for index in sublist))
|
364 |
df = items_dict.iloc[flattened_indices]
|
365 |
if st.session_state.ind != []:
|
366 |
-
with
|
367 |
-
cont1 =
|
368 |
with cont1:
|
369 |
wc = wordcloud.WordCloud(width=1000, height=320, background_color='white').generate(
|
370 |
' '.join(df['CATEGORY']))
|
@@ -376,8 +396,8 @@ def mart():
|
|
376 |
|
377 |
st.pyplot(fig, use_container_width=True)
|
378 |
|
379 |
-
with
|
380 |
-
col1, col2 =
|
381 |
with col1:
|
382 |
st.markdown('## DEMAND AS PER CATEGORY')
|
383 |
with plt.style.context('Solarize_Light2'):
|
@@ -392,13 +412,13 @@ def mart():
|
|
392 |
fig1.update_traces(text=df['AVAILABILITY'], textposition='outside')
|
393 |
st.plotly_chart(fig1, use_container_width=True)
|
394 |
|
395 |
-
with
|
396 |
st.markdown('## :deciduous_tree: Hierarchical view of demand using TreeMap')
|
397 |
fig4 = px.treemap(df, path=['CATEGORY', 'AVAILABILITY','PRODUCT'],color='AVAILABILITY')
|
398 |
fig4.update_layout(height=550)
|
399 |
st.plotly_chart(fig4, use_container_width=True,scrolling=False)
|
400 |
|
401 |
-
with
|
402 |
fig = px.bar(df,
|
403 |
y='CATEGORY',
|
404 |
x='BREADCRUMBS',
|
@@ -409,11 +429,14 @@ def mart():
|
|
409 |
)
|
410 |
st.plotly_chart(fig, use_container_width=True)
|
411 |
# st.markdown("## :desktop_computer: DO YOUR OWN RESEARCH...")
|
412 |
-
with
|
413 |
pygwalerapp(df).explorer()
|
414 |
# Initialize the inference client for the Mixtral model
|
|
|
|
|
|
|
415 |
if not mode:
|
416 |
-
cook, saved =
|
417 |
with cook:
|
418 |
cooking()
|
419 |
with saved:
|
|
|
34 |
if 'ind' not in st.session_state:
|
35 |
st.session_state.ind = []
|
36 |
|
37 |
+
|
38 |
+
def spinner(txt):return st.spinner(txt)
|
39 |
+
|
40 |
+
def columns(n):
|
41 |
+
return st.columns(n)
|
42 |
+
|
43 |
+
def text_area(txt,value,placeholder):
|
44 |
+
return st.text_area(txt,value=value,placeholder=placeholder)
|
45 |
+
|
46 |
+
def number_input(txt,min_value,max_value,value,step):return st.number_input(txt,min_value=min_value,max_value=max_value,value=value,step=step)
|
47 |
+
|
48 |
+
def button(txt,on_click,type,disabled=False,use_container_width=False,kwargs=None):
|
49 |
+
return st.button(label=txt,on_click=on_click,disabled=disabled,type=type,use_container_width=use_container_width,kwargs=kwargs)
|
50 |
+
|
51 |
+
def container(border,height):
|
52 |
+
return st.container(border=border,height=height)
|
53 |
+
|
54 |
+
def selectbox(txt,options,key=None):return st.selectbox(txt,options=options,key=key)
|
55 |
+
def expander(txt):return st.expander(txt)
|
56 |
@st.cache_resource(show_spinner=False)
|
57 |
def pygwalerapp(df):
|
58 |
return StreamlitRenderer(df)
|
|
|
67 |
cosine_similarities = cosine_similarity(user_vector, count_matrix).flatten()
|
68 |
similar_indices = cosine_similarities.argsort()[::-1]
|
69 |
return similar_indices
|
70 |
+
@st.experimental_fragment
|
71 |
def show_recipe(recipe):
|
72 |
+
with spinner("HANG TIGHT, RECIPE INCOMING..."):
|
73 |
name_and_dis = f'# {recipe["name"]}\n\n'
|
74 |
name_and_dis += f'{recipe["description"]}\n\n'
|
75 |
ingredients = '## Ingredients:\n'
|
|
|
78 |
instructions += f"{instruction['step_number']}. {instruction['instruction']}\n"
|
79 |
|
80 |
st.write(name_and_dis)
|
81 |
+
col01, col02 = columns(2)
|
82 |
with col01:
|
83 |
+
cont = container(border=True, height=500)
|
84 |
+
with cont:
|
85 |
+
st.write(ingredients)
|
86 |
+
for j, i in enumerate(recipe["ingredients"]):
|
87 |
+
ind = get_recommendations(i['name'], cv, vectors)
|
88 |
+
st.session_state.ind.append(ind[:5].tolist())
|
89 |
+
selectbox(i['name'],
|
90 |
+
options=items_dict.iloc[ind][
|
91 |
+
"PRODUCT_NAME"].values,
|
92 |
+
key=f"selectbox_{j}_{i['name']}{random.random() * 100}")
|
93 |
with col02:
|
94 |
+
cont = container(border=True, height=500)
|
95 |
+
with cont:st.write(instructions)
|
96 |
+
@st.experimental_fragment
|
97 |
def cooking():
|
98 |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
99 |
|
|
|
140 |
return prompt
|
141 |
|
142 |
def generate_recipe(user_inputs):
|
143 |
+
with spinner('Building the perfect recipe...'):
|
144 |
prompt = create_detailed_prompt(user_inputs['user_direction'], user_inputs['exclusions'],
|
145 |
user_inputs['serving_size'], user_inputs['difficulty'])
|
146 |
|
|
|
220 |
st.session_state.recipe = None
|
221 |
|
222 |
st.title("Let's get cooking")
|
223 |
+
col1, col2 = columns(2)
|
224 |
with col1:
|
225 |
+
st.session_state.user_direction = text_area(
|
226 |
"What do you want to cook? Describe anything - a dish, cuisine, event, or vibe.",
|
227 |
value=st.session_state.user_direction,
|
228 |
placeholder="quick snack, asian style bowl with either noodles or rice, something italian",
|
229 |
)
|
230 |
with col2:
|
231 |
+
st.session_state.serving_size = number_input(
|
232 |
"How many servings would you like to cook?",
|
233 |
min_value=1,
|
234 |
max_value=100,
|
|
|
287 |
|
288 |
button_cols_submit = st.columns([1, 1, 4])
|
289 |
with button_cols_submit[0]:
|
290 |
+
button(txt='Submit', on_click=generate_recipe, kwargs=dict(user_inputs=user_inputs),
|
291 |
type="primary",
|
292 |
use_container_width=True)
|
293 |
with button_cols_submit[1]:
|
294 |
+
button(txt='Reset', on_click=clear_inputs, type="secondary", use_container_width=True)
|
295 |
with button_cols_submit[2]:
|
296 |
st.empty()
|
297 |
|
|
|
325 |
disable_button = False
|
326 |
button_cols_save = st.columns([1, 1, 4])
|
327 |
with button_cols_save[0]:
|
328 |
+
button("Save Recipe", on_click=save_recipe, disabled=disable_button, type="primary")
|
329 |
with button_cols_save[1]:
|
330 |
st.empty()
|
331 |
with button_cols_save[2]:
|
332 |
st.empty()
|
333 |
if st.session_state.recipe_saved == True:
|
334 |
st.success("Recipe Saved!")
|
335 |
+
@st.experimental_fragment
|
336 |
def rsaved():
|
337 |
st.title("Saved Recipes")
|
338 |
def load_saved_recipes_from_pickle(directory_path):
|
|
|
366 |
elif user_sort == 'Random':
|
367 |
recipes.sort(key=lambda x: x['file'])
|
368 |
with cols[0]:
|
369 |
+
user_search = selectbox("Search Recipes", [""] + [recipe['name'] for recipe in recipes])
|
370 |
st.write("") # just some space
|
371 |
|
372 |
if user_search != "":
|
|
|
376 |
show_recipe(filtered_recipes[0])
|
377 |
else:
|
378 |
st.write("No recipe found.")
|
379 |
+
@st.experimental_fragment
|
380 |
def mart():
|
381 |
st.markdown("# :eyes: PEOPLE SEARCHING FOR...")
|
382 |
print(st.session_state.ind)
|
383 |
flattened_indices = list(set(index for sublist in st.session_state.ind for index in sublist))
|
384 |
df = items_dict.iloc[flattened_indices]
|
385 |
if st.session_state.ind != []:
|
386 |
+
with spinner("LET'S SEE, WHAT PEOPLE WANT..."):
|
387 |
+
cont1 = container(border=True, height=500)
|
388 |
with cont1:
|
389 |
wc = wordcloud.WordCloud(width=1000, height=320, background_color='white').generate(
|
390 |
' '.join(df['CATEGORY']))
|
|
|
396 |
|
397 |
st.pyplot(fig, use_container_width=True)
|
398 |
|
399 |
+
with container(border=True, height=500):
|
400 |
+
col1, col2 = columns(2)
|
401 |
with col1:
|
402 |
st.markdown('## DEMAND AS PER CATEGORY')
|
403 |
with plt.style.context('Solarize_Light2'):
|
|
|
412 |
fig1.update_traces(text=df['AVAILABILITY'], textposition='outside')
|
413 |
st.plotly_chart(fig1, use_container_width=True)
|
414 |
|
415 |
+
with container(border=True, height=620):
|
416 |
st.markdown('## :deciduous_tree: Hierarchical view of demand using TreeMap')
|
417 |
fig4 = px.treemap(df, path=['CATEGORY', 'AVAILABILITY','PRODUCT'],color='AVAILABILITY')
|
418 |
fig4.update_layout(height=550)
|
419 |
st.plotly_chart(fig4, use_container_width=True,scrolling=False)
|
420 |
|
421 |
+
with container(border=True, height=500):
|
422 |
fig = px.bar(df,
|
423 |
y='CATEGORY',
|
424 |
x='BREADCRUMBS',
|
|
|
429 |
)
|
430 |
st.plotly_chart(fig, use_container_width=True)
|
431 |
# st.markdown("## :desktop_computer: DO YOUR OWN RESEARCH...")
|
432 |
+
with expander("## :desktop_computer: LOOKING FOR SOMETHING ELSE..."):
|
433 |
pygwalerapp(df).explorer()
|
434 |
# Initialize the inference client for the Mixtral model
|
435 |
+
@st.experimental_fragment
|
436 |
+
def tabs():
|
437 |
+
return st.tabs(['COOK','SAVED'])
|
438 |
if not mode:
|
439 |
+
cook, saved = tabs()
|
440 |
with cook:
|
441 |
cooking()
|
442 |
with saved:
|