Spaces:
Runtime error
Runtime error
import shutil | |
import subprocess | |
import torch | |
import gradio as gr | |
from fastapi import FastAPI | |
import os | |
from PIL import Image | |
import tempfile | |
from decord import VideoReader, cpu | |
from transformers import TextStreamer | |
from llava.constants import DEFAULT_X_TOKEN, X_TOKEN_INDEX | |
from llava.conversation import conv_templates, SeparatorStyle, Conversation | |
from llava.serve.gradio_utils import Chat, tos_markdown, learn_more_markdown, title_markdown, block_css | |
def save_image_to_local(image): | |
filename = os.path.join('temp', next(tempfile._get_candidate_names()) + '.jpg') | |
image = Image.open(image) | |
image.save(filename) | |
# print(filename) | |
return filename | |
def save_video_to_local(video_path): | |
filename = os.path.join('temp', next(tempfile._get_candidate_names()) + '.mp4') | |
shutil.copyfile(video_path, filename) | |
return filename | |
def generate(image1, video, textbox_in, first_run, state, state_, images_tensor): | |
flag = 1 | |
if not textbox_in: | |
if len(state_.messages) > 0: | |
textbox_in = state_.messages[-1][1] | |
state_.messages.pop(-1) | |
flag = 0 | |
else: | |
return "Please enter instruction" | |
image1 = image1 if image1 else "none" | |
video = video if video else "none" | |
# assert not (os.path.exists(image1) and os.path.exists(video)) | |
if type(state) is not Conversation: | |
state = conv_templates[conv_mode].copy() | |
state_ = conv_templates[conv_mode].copy() | |
images_tensor = [[], []] | |
first_run = False if len(state.messages) > 0 else True | |
text_en_in = textbox_in.replace("picture", "image") | |
# images_tensor = [[], []] | |
image_processor = handler.image_processor | |
if os.path.exists(image1) and not os.path.exists(video): | |
tensor = image_processor.preprocess(image1, return_tensors='pt')['pixel_values'][0] | |
# print(tensor.shape) | |
tensor = tensor.to(handler.model.device, dtype=dtype) | |
images_tensor[0] = images_tensor[0] + [tensor] | |
images_tensor[1] = images_tensor[1] + ['image'] | |
print(torch.cuda.memory_allocated()) | |
print(torch.cuda.max_memory_allocated()) | |
video_processor = handler.video_processor | |
if not os.path.exists(image1) and os.path.exists(video): | |
tensor = video_processor(video, return_tensors='pt')['pixel_values'][0] | |
# print(tensor.shape) | |
tensor = tensor.to(handler.model.device, dtype=dtype) | |
images_tensor[0] = images_tensor[0] + [tensor] | |
images_tensor[1] = images_tensor[1] + ['video'] | |
print(torch.cuda.memory_allocated()) | |
print(torch.cuda.max_memory_allocated()) | |
if os.path.exists(image1) and os.path.exists(video): | |
tensor = video_processor(video, return_tensors='pt')['pixel_values'][0] | |
# print(tensor.shape) | |
tensor = tensor.to(handler.model.device, dtype=dtype) | |
images_tensor[0] = images_tensor[0] + [tensor] | |
images_tensor[1] = images_tensor[1] + ['video'] | |
tensor = image_processor.preprocess(image1, return_tensors='pt')['pixel_values'][0] | |
# print(tensor.shape) | |
tensor = tensor.to(handler.model.device, dtype=dtype) | |
images_tensor[0] = images_tensor[0] + [tensor] | |
images_tensor[1] = images_tensor[1] + ['image'] | |
print(torch.cuda.memory_allocated()) | |
print(torch.cuda.max_memory_allocated()) | |
if os.path.exists(image1) and not os.path.exists(video): | |
text_en_in = DEFAULT_X_TOKEN['IMAGE'] + '\n' + text_en_in | |
if not os.path.exists(image1) and os.path.exists(video): | |
text_en_in = DEFAULT_X_TOKEN['VIDEO'] + '\n' + text_en_in | |
if os.path.exists(image1) and os.path.exists(video): | |
text_en_in = DEFAULT_X_TOKEN['VIDEO'] + '\n' + text_en_in + '\n' + DEFAULT_X_TOKEN['IMAGE'] | |
text_en_out, state_ = handler.generate(images_tensor, text_en_in, first_run=first_run, state=state_) | |
state_.messages[-1] = (state_.roles[1], text_en_out) | |
text_en_out = text_en_out.split('#')[0] | |
textbox_out = text_en_out | |
show_images = "" | |
if os.path.exists(image1): | |
filename = save_image_to_local(image1) | |
show_images += f'<img src="./file={filename}" style="display: inline-block;width: 250px;max-height: 400px;">' | |
if os.path.exists(video): | |
filename = save_video_to_local(video) | |
show_images += f'<video controls playsinline width="500" style="display: inline-block;" src="./file={filename}"></video>' | |
if flag: | |
state.append_message(state.roles[0], textbox_in + "\n" + show_images) | |
state.append_message(state.roles[1], textbox_out) | |
return (state, state_, state.to_gradio_chatbot(), False, gr.update(value=None, interactive=True), images_tensor, gr.update(value=image1 if os.path.exists(image1) else None, interactive=True), gr.update(value=video if os.path.exists(video) else None, interactive=True)) | |
def regenerate(state, state_): | |
state.messages.pop(-1) | |
state_.messages.pop(-1) | |
if len(state.messages) > 0: | |
return state, state_, state.to_gradio_chatbot(), False | |
return (state, state_, state.to_gradio_chatbot(), True) | |
def clear_history(state, state_): | |
state = conv_templates[conv_mode].copy() | |
state_ = conv_templates[conv_mode].copy() | |
return (gr.update(value=None, interactive=True), | |
gr.update(value=None, interactive=True),\ | |
gr.update(value=None, interactive=True),\ | |
True, state, state_, state.to_gradio_chatbot(), [[], []]) | |
conv_mode = "llava_v1" | |
model_path = 'LanguageBind/Video-LLaVA-7B' | |
device = 'cuda' | |
load_8bit = False | |
load_4bit = True | |
dtype = torch.float16 | |
handler = Chat(model_path, conv_mode=conv_mode, load_8bit=load_8bit, load_4bit=load_8bit, device=device) | |
# handler.model.to(dtype=dtype) | |
if not os.path.exists("temp"): | |
os.makedirs("temp") | |
print(torch.cuda.memory_allocated()) | |
print(torch.cuda.max_memory_allocated()) | |
app = FastAPI() | |
textbox = gr.Textbox( | |
show_label=False, placeholder="Enter text and press ENTER", container=False | |
) | |
with gr.Blocks(title='Video-LLaVAπ', theme=gr.themes.Default(), css=block_css) as demo: | |
gr.Markdown(title_markdown) | |
state = gr.State() | |
state_ = gr.State() | |
first_run = gr.State() | |
images_tensor = gr.State() | |
with gr.Row(): | |
with gr.Column(scale=3): | |
image1 = gr.Image(label="Input Image", type="filepath") | |
video = gr.Video(label="Input Video") | |
cur_dir = os.path.dirname(os.path.abspath(__file__)) | |
gr.Examples( | |
examples=[ | |
[ | |
f"{cur_dir}/examples/extreme_ironing.jpg", | |
"What is unusual about this image?", | |
], | |
[ | |
f"{cur_dir}/examples/waterview.jpg", | |
"What are the things I should be cautious about when I visit here?", | |
], | |
[ | |
f"{cur_dir}/examples/glove.jpg", | |
"What happens when the glove drops?", | |
], | |
[ | |
f"{cur_dir}/examples/desert.jpg", | |
"If there are factual errors in the questions, point it out; if not, proceed answering the question. Whatβs happening in the desert?", | |
], | |
], | |
inputs=[image1, textbox], | |
) | |
with gr.Column(scale=7): | |
chatbot = gr.Chatbot(label="Video-LLaVA", bubble_full_width=True).style(height=850) | |
with gr.Row(): | |
with gr.Column(scale=8): | |
textbox.render() | |
with gr.Column(scale=1, min_width=50): | |
submit_btn = gr.Button( | |
value="Send", variant="primary", interactive=True | |
) | |
with gr.Row(elem_id="buttons") as button_row: | |
upvote_btn = gr.Button(value="π Upvote", interactive=True) | |
downvote_btn = gr.Button(value="π Downvote", interactive=True) | |
flag_btn = gr.Button(value="β οΈ Flag", interactive=True) | |
# stop_btn = gr.Button(value="βΉοΈ Stop Generation", interactive=False) | |
regenerate_btn = gr.Button(value="π Regenerate", interactive=True) | |
clear_btn = gr.Button(value="ποΈ Clear history", interactive=True) | |
with gr.Row(): | |
gr.Examples( | |
examples=[ | |
[ | |
f"{cur_dir}/examples/sample_img_22.png", | |
f"{cur_dir}/examples/sample_demo_22.mp4", | |
"Are the instruments in the pictures used in the video?", | |
], | |
[ | |
f"{cur_dir}/examples/sample_img_13.png", | |
f"{cur_dir}/examples/sample_demo_13.mp4", | |
"Does the flag in the image appear in the video?", | |
], | |
[ | |
f"{cur_dir}/examples/sample_img_8.png", | |
f"{cur_dir}/examples/sample_demo_8.mp4", | |
"Are the image and the video depicting the same place?", | |
], | |
], | |
inputs=[image1, video, textbox], | |
) | |
gr.Examples( | |
examples=[ | |
[ | |
f"{cur_dir}/examples/sample_demo_1.mp4", | |
"Why is this video funny?", | |
], | |
[ | |
f"{cur_dir}/examples/sample_demo_3.mp4", | |
"Can you identify any safety hazards in this video?" | |
], | |
[ | |
f"{cur_dir}/examples/sample_demo_9.mp4", | |
"Describe the video.", | |
], | |
[ | |
f"{cur_dir}/examples/sample_demo_22.mp4", | |
"Describe the activity in the video.", | |
], | |
], | |
inputs=[video, textbox], | |
) | |
gr.Markdown(tos_markdown) | |
gr.Markdown(learn_more_markdown) | |
submit_btn.click(generate, [image1, video, textbox, first_run, state, state_, images_tensor], | |
[state, state_, chatbot, first_run, textbox, images_tensor, image1, video]) | |
regenerate_btn.click(regenerate, [state, state_], [state, state_, chatbot, first_run]).then( | |
generate, [image1, video, textbox, first_run, state, state_, images_tensor], [state, state_, chatbot, first_run, textbox, images_tensor, image1, video]) | |
clear_btn.click(clear_history, [state, state_], | |
[image1, video, textbox, first_run, state, state_, chatbot, images_tensor]) | |
# app = gr.mount_gradio_app(app, demo, path="/") | |
demo.launch() | |
# uvicorn llava.serve.gradio_web_server:app | |