Spaces:
Runtime error
Runtime error
import copy | |
import os | |
from typing import Union | |
from transformers import PretrainedConfig | |
from transformers.utils import logging | |
logger = logging.get_logger(__name__) | |
class CLIPTextConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`CLIPTextModel`]. It is used to instantiate a CLIP | |
text encoder according to the specified arguments, defining the model architecture. Instantiating a configuration | |
with the defaults will yield a similar configuration to that of the text encoder of the CLIP | |
[openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 49408): | |
Vocabulary size of the CLIP text model. Defines the number of different tokens that can be represented by | |
the `inputs_ids` passed when calling [`CLIPModel`]. | |
hidden_size (`int`, *optional*, defaults to 512): | |
Dimensionality of the encoder layers and the pooler layer. | |
intermediate_size (`int`, *optional*, defaults to 2048): | |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
num_hidden_layers (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 8): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
max_position_embeddings (`int`, *optional*, defaults to 77): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-5): | |
The epsilon used by the layer normalization layers. | |
attention_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
initializer_factor (`float`, *optional*, defaults to 1): | |
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization | |
testing). | |
Example: | |
```python | |
>>> from transformers import CLIPTextConfig, CLIPTextModel | |
>>> # Initializing a CLIPTextConfig with openai/clip-vit-base-patch32 style configuration | |
>>> configuration = CLIPTextConfig() | |
>>> # Initializing a CLIPTextModel (with random weights) from the openai/clip-vit-base-patch32 style configuration | |
>>> model = CLIPTextModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "clip_text_model" | |
def __init__( | |
self, | |
vocab_size=49408, | |
hidden_size=512, | |
intermediate_size=2048, | |
projection_dim=512, | |
num_hidden_layers=12, | |
num_attention_heads=8, | |
max_position_embeddings=77, | |
hidden_act="quick_gelu", | |
layer_norm_eps=1e-5, | |
attention_dropout=0.0, | |
initializer_range=0.02, | |
initializer_factor=1.0, | |
# This differs from `CLIPTokenizer`'s default and from openai/clip | |
# See https://github.com/huggingface/transformers/pull/24773#issuecomment-1632287538 | |
pad_token_id=1, | |
bos_token_id=49406, | |
eos_token_id=49407, | |
**kwargs, | |
): | |
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.intermediate_size = intermediate_size | |
self.projection_dim = projection_dim | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.max_position_embeddings = max_position_embeddings | |
self.layer_norm_eps = layer_norm_eps | |
self.hidden_act = hidden_act | |
self.initializer_range = initializer_range | |
self.initializer_factor = initializer_factor | |
self.attention_dropout = attention_dropout | |
self.add_time_attn = False ###################################### | |
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
cls._set_token_in_kwargs(kwargs) | |
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
# get the text config dict if we are loading from CLIPConfig | |
if config_dict.get("model_type") == "clip": | |
config_dict = config_dict["text_config"] | |
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
logger.warning( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
) | |
return cls.from_dict(config_dict, **kwargs) | |
class CLIPVisionConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`CLIPVisionModel`]. It is used to instantiate a | |
CLIP vision encoder according to the specified arguments, defining the model architecture. Instantiating a | |
configuration with the defaults will yield a similar configuration to that of the vision encoder of the CLIP | |
[openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
intermediate_size (`int`, *optional*, defaults to 3072): | |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
num_hidden_layers (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
image_size (`int`, *optional*, defaults to 224): | |
The size (resolution) of each image. | |
patch_size (`int`, *optional*, defaults to 32): | |
The size (resolution) of each patch. | |
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-5): | |
The epsilon used by the layer normalization layers. | |
attention_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
initializer_factor (`float`, *optional*, defaults to 1): | |
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization | |
testing). | |
Example: | |
```python | |
>>> from transformers import CLIPVisionConfig, CLIPVisionModel | |
>>> # Initializing a CLIPVisionConfig with openai/clip-vit-base-patch32 style configuration | |
>>> configuration = CLIPVisionConfig() | |
>>> # Initializing a CLIPVisionModel (with random weights) from the openai/clip-vit-base-patch32 style configuration | |
>>> model = CLIPVisionModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "clip_vision_model" | |
def __init__( | |
self, | |
hidden_size=768, | |
intermediate_size=3072, | |
projection_dim=512, | |
num_hidden_layers=12, | |
num_attention_heads=12, | |
num_channels=3, | |
image_size=224, | |
patch_size=32, | |
hidden_act="quick_gelu", | |
layer_norm_eps=1e-5, | |
attention_dropout=0.0, | |
initializer_range=0.02, | |
initializer_factor=1.0, | |
add_time_attn=False, ################################ | |
num_frames=1, ################################ | |
force_patch_dropout=0.0, ################################ | |
lora_r=2, ################################ | |
lora_alpha=16, ################################ | |
lora_dropout=0.0, ################################ | |
num_mel_bins=0.0, ################################ | |
target_length=0.0, ################################ | |
video_decode_backend='decord', ######################### | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.hidden_size = hidden_size | |
self.intermediate_size = intermediate_size | |
self.projection_dim = projection_dim | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.num_channels = num_channels | |
self.patch_size = patch_size | |
self.image_size = image_size | |
self.initializer_range = initializer_range | |
self.initializer_factor = initializer_factor | |
self.attention_dropout = attention_dropout | |
self.layer_norm_eps = layer_norm_eps | |
self.hidden_act = hidden_act | |
self.add_time_attn = add_time_attn ################ | |
self.num_frames = num_frames ################ | |
self.force_patch_dropout = force_patch_dropout ################ | |
self.lora_r = lora_r ################ | |
self.lora_alpha = lora_alpha ################ | |
self.lora_dropout = lora_dropout ################ | |
self.num_mel_bins = num_mel_bins ################ | |
self.target_length = target_length ################ | |
self.video_decode_backend = video_decode_backend ################ | |
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
cls._set_token_in_kwargs(kwargs) | |
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
# get the vision config dict if we are loading from CLIPConfig | |
if config_dict.get("model_type") == "clip": | |
config_dict = config_dict["vision_config"] | |
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
logger.warning( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
) | |
return cls.from_dict(config_dict, **kwargs) | |
class LanguageBindThermalConfig(PretrainedConfig): | |
r""" | |
[`CLIPConfig`] is the configuration class to store the configuration of a [`CLIPModel`]. It is used to instantiate | |
a CLIP model according to the specified arguments, defining the text model and vision model configs. Instantiating | |
a configuration with the defaults will yield a similar configuration to that of the CLIP | |
[openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
text_config (`dict`, *optional*): | |
Dictionary of configuration options used to initialize [`CLIPTextConfig`]. | |
vision_config (`dict`, *optional*): | |
Dictionary of configuration options used to initialize [`CLIPVisionConfig`]. | |
projection_dim (`int`, *optional*, defaults to 512): | |
Dimentionality of text and vision projection layers. | |
logit_scale_init_value (`float`, *optional*, defaults to 2.6592): | |
The inital value of the *logit_scale* paramter. Default is used as per the original CLIP implementation. | |
kwargs (*optional*): | |
Dictionary of keyword arguments. | |
Example: | |
```python | |
>>> from transformers import CLIPConfig, CLIPModel | |
>>> # Initializing a CLIPConfig with openai/clip-vit-base-patch32 style configuration | |
>>> configuration = CLIPConfig() | |
>>> # Initializing a CLIPModel (with random weights) from the openai/clip-vit-base-patch32 style configuration | |
>>> model = CLIPModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
>>> # We can also initialize a CLIPConfig from a CLIPTextConfig and a CLIPVisionConfig | |
>>> from transformers import CLIPTextConfig, CLIPVisionConfig | |
>>> # Initializing a CLIPText and CLIPVision configuration | |
>>> config_text = CLIPTextConfig() | |
>>> config_vision = CLIPVisionConfig() | |
>>> config = CLIPConfig.from_text_vision_configs(config_text, config_vision) | |
```""" | |
model_type = "LanguageBindThermal" | |
is_composition = True | |
def __init__( | |
self, text_config=None, vision_config=None, projection_dim=512, logit_scale_init_value=2.6592, **kwargs | |
): | |
# If `_config_dict` exist, we use them for the backward compatibility. | |
# We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot | |
# of confusion!). | |
text_config_dict = kwargs.pop("text_config_dict", None) | |
vision_config_dict = kwargs.pop("vision_config_dict", None) | |
super().__init__(**kwargs) | |
# Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in | |
# `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most | |
# cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. | |
if text_config_dict is not None: | |
if text_config is None: | |
text_config = {} | |
# This is the complete result when using `text_config_dict`. | |
_text_config_dict = CLIPTextConfig(**text_config_dict).to_dict() | |
# Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. | |
for key, value in _text_config_dict.items(): | |
if key in text_config and value != text_config[key] and key not in ["transformers_version"]: | |
# If specified in `text_config_dict` | |
if key in text_config_dict: | |
message = ( | |
f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. " | |
f'The value `text_config_dict["{key}"]` will be used instead.' | |
) | |
# If inferred from default argument values (just to be super careful) | |
else: | |
message = ( | |
f"`text_config_dict` is provided which will be used to initialize `CLIPTextConfig`. The " | |
f'value `text_config["{key}"]` will be overriden.' | |
) | |
logger.warning(message) | |
# Update all values in `text_config` with the ones in `_text_config_dict`. | |
text_config.update(_text_config_dict) | |
if vision_config_dict is not None: | |
if vision_config is None: | |
vision_config = {} | |
# This is the complete result when using `vision_config_dict`. | |
_vision_config_dict = CLIPVisionConfig(**vision_config_dict).to_dict() | |
# convert keys to string instead of integer | |
if "id2label" in _vision_config_dict: | |
_vision_config_dict["id2label"] = { | |
str(key): value for key, value in _vision_config_dict["id2label"].items() | |
} | |
# Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. | |
for key, value in _vision_config_dict.items(): | |
if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: | |
# If specified in `vision_config_dict` | |
if key in vision_config_dict: | |
message = ( | |
f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different " | |
f'values. The value `vision_config_dict["{key}"]` will be used instead.' | |
) | |
# If inferred from default argument values (just to be super careful) | |
else: | |
message = ( | |
f"`vision_config_dict` is provided which will be used to initialize `CLIPVisionConfig`. " | |
f'The value `vision_config["{key}"]` will be overriden.' | |
) | |
logger.warning(message) | |
# Update all values in `vision_config` with the ones in `_vision_config_dict`. | |
vision_config.update(_vision_config_dict) | |
if text_config is None: | |
text_config = {} | |
logger.info("`text_config` is `None`. Initializing the `CLIPTextConfig` with default values.") | |
if vision_config is None: | |
vision_config = {} | |
logger.info("`vision_config` is `None`. initializing the `CLIPVisionConfig` with default values.") | |
self.text_config = CLIPTextConfig(**text_config) | |
self.vision_config = CLIPVisionConfig(**vision_config) | |
self.projection_dim = projection_dim | |
self.logit_scale_init_value = logit_scale_init_value | |
self.initializer_factor = 1.0 | |
def from_text_vision_configs(cls, text_config: CLIPTextConfig, vision_config: CLIPVisionConfig, **kwargs): | |
r""" | |
Instantiate a [`CLIPConfig`] (or a derived class) from clip text model configuration and clip vision model | |
configuration. | |
Returns: | |
[`CLIPConfig`]: An instance of a configuration object | |
""" | |
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs) | |
def to_dict(self): | |
""" | |
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. | |
Returns: | |
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, | |
""" | |
output = copy.deepcopy(self.__dict__) | |
output["text_config"] = self.text_config.to_dict() | |
output["vision_config"] = self.vision_config.to_dict() | |
output["model_type"] = self.__class__.model_type | |
return output | |