OnsAouedi commited on
Commit
94969df
1 Parent(s): ccbec5d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -398,7 +398,7 @@ def calculate_distance_metrics(y_true, y_pred):
398
  # Classical Metrics Prediction
399
  # ============================
400
 
401
- def classical_prediction(file, model_choice, min_mmsi, max_mmsi, models, loaded_scalers):
402
  """
403
  Preprocess the input CSV and make predictions using the selected model.
404
  Calculate classical evaluation metrics and include inference time.
@@ -408,7 +408,7 @@ def classical_prediction(file, model_choice, min_mmsi, max_mmsi, models, loaded_
408
 
409
  # Load the uploaded CSV file and filter based on MMSI
410
  logging.info("Loading uploaded CSV file...")
411
- df = pd.read_csv(file, delimiter=',')
412
  logging.info(f"Uploaded CSV file loaded with {df.shape[0]} records.")
413
 
414
  df = df[(df['mmsi'] >= min_mmsi) & (df['mmsi'] <= max_mmsi)]
@@ -557,7 +557,7 @@ def classical_prediction(file, model_choice, min_mmsi, max_mmsi, models, loaded_
557
  # Abnormal Behavior Detection
558
  # ============================
559
 
560
- def abnormal_behavior_detection(prediction_file, alpha=0.5, threshold=10.0):
561
  """
562
  Detect abnormal behavior based on angular divergence and distance difference.
563
  Accepts a CSV file containing real and predicted positions.
@@ -567,7 +567,7 @@ def abnormal_behavior_detection(prediction_file, alpha=0.5, threshold=10.0):
567
 
568
  # Load the CSV file containing real and predicted positions
569
  logging.info("Loading prediction CSV file...")
570
- df = pd.read_csv(prediction_file)
571
  logging.info(f"Prediction CSV file loaded with {df.shape[0]} records.")
572
 
573
  # Check if necessary columns exist
@@ -691,7 +691,7 @@ def main():
691
  classical_tab = gr.Interface(
692
  fn=lambda file, model_choice, min_mmsi, max_mmsi: classical_prediction(file, model_choice, min_mmsi, max_mmsi, models, loaded_scalers),
693
  inputs=[
694
- gr.File(label="Upload CSV File", type='file'),
695
  gr.Dropdown(choices=["Auto-Select", "Teacher", "Student_North", "Student_Mid", "Student_South"], value="Auto-Select", label="Choose Model"),
696
  gr.Number(label="Min MMSI", value=0),
697
  gr.Number(label="Max MMSI", value=999999999)
@@ -709,7 +709,7 @@ def main():
709
  abnormal_tab = gr.Interface(
710
  fn=lambda prediction_file, alpha, threshold: abnormal_behavior_detection(prediction_file, alpha, threshold),
711
  inputs=[
712
- gr.File(label="Upload Predicted Positions CSV", type='file'),
713
  gr.Slider(minimum=0, maximum=1, step=0.1, value=0.5, label="Alpha (α)"),
714
  gr.Number(label="Threshold", value=10.0)
715
  ],
 
398
  # Classical Metrics Prediction
399
  # ============================
400
 
401
+ def classical_prediction(file_path, model_choice, min_mmsi, max_mmsi, models, loaded_scalers):
402
  """
403
  Preprocess the input CSV and make predictions using the selected model.
404
  Calculate classical evaluation metrics and include inference time.
 
408
 
409
  # Load the uploaded CSV file and filter based on MMSI
410
  logging.info("Loading uploaded CSV file...")
411
+ df = pd.read_csv(file_path, delimiter=',')
412
  logging.info(f"Uploaded CSV file loaded with {df.shape[0]} records.")
413
 
414
  df = df[(df['mmsi'] >= min_mmsi) & (df['mmsi'] <= max_mmsi)]
 
557
  # Abnormal Behavior Detection
558
  # ============================
559
 
560
+ def abnormal_behavior_detection(prediction_file_path, alpha=0.5, threshold=10.0):
561
  """
562
  Detect abnormal behavior based on angular divergence and distance difference.
563
  Accepts a CSV file containing real and predicted positions.
 
567
 
568
  # Load the CSV file containing real and predicted positions
569
  logging.info("Loading prediction CSV file...")
570
+ df = pd.read_csv(prediction_file_path)
571
  logging.info(f"Prediction CSV file loaded with {df.shape[0]} records.")
572
 
573
  # Check if necessary columns exist
 
691
  classical_tab = gr.Interface(
692
  fn=lambda file, model_choice, min_mmsi, max_mmsi: classical_prediction(file, model_choice, min_mmsi, max_mmsi, models, loaded_scalers),
693
  inputs=[
694
+ gr.File(label="Upload CSV File", type='filepath'),
695
  gr.Dropdown(choices=["Auto-Select", "Teacher", "Student_North", "Student_Mid", "Student_South"], value="Auto-Select", label="Choose Model"),
696
  gr.Number(label="Min MMSI", value=0),
697
  gr.Number(label="Max MMSI", value=999999999)
 
709
  abnormal_tab = gr.Interface(
710
  fn=lambda prediction_file, alpha, threshold: abnormal_behavior_detection(prediction_file, alpha, threshold),
711
  inputs=[
712
+ gr.File(label="Upload Predicted Positions CSV", type='filepath'),
713
  gr.Slider(minimum=0, maximum=1, step=0.1, value=0.5, label="Alpha (α)"),
714
  gr.Number(label="Threshold", value=10.0)
715
  ],