File size: 3,754 Bytes
bd5fd40
59862ce
bd5fd40
 
 
 
59862ce
5c0a46c
bd5fd40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59862ce
bd5fd40
 
 
59862ce
bd5fd40
59862ce
 
bd5fd40
59862ce
bd5fd40
 
59862ce
bd5fd40
 
 
 
 
59862ce
bd5fd40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59862ce
bd5fd40
 
59862ce
bd5fd40
 
 
 
 
59862ce
bd5fd40
 
 
 
 
 
 
 
 
 
 
59862ce
bd5fd40
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import spaces
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
from threading import Thread
import traceback

model_path = 'infly/OpenCoder-1.5B-Instruct'

# Loading the tokenizer and model from Hugging Face's model hub.
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16)

# using CUDA for an optimal experience
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)

# Defining a custom stopping criteria class for the model's text generation.
class StopOnTokens(StoppingCriteria):
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        stop_ids = [96539]  # IDs of tokens where the generation should stop.
        for stop_id in stop_ids:
            if input_ids[0][-1] == stop_id:  # Checking if the last generated token is a stop token.
                return True
        return False


system_role= 'system'
user_role = 'user'
assistant_role = "assistant"

sft_start_token =  "<|im_start|>"
sft_end_token = "<|im_end|>"
ct_end_token = "<|endoftext|>"

# system_prompt= 'You are a CodeLLM developed by INF.'


# Function to generate model predictions.

@spaces.GPU()
def predict(message, history):

    try:
        stop = StopOnTokens()
    
        model_messages = []
        # print(f'history: {history}')

        for i, item in enumerate(history):
            model_messages.append({"role": user_role, "content": item[0]})
            model_messages.append({"role": assistant_role, "content": item[1]})
    
        model_messages.append({"role": user_role, "content": message})
        
        print(f'model_messages: {model_messages}')
    
        # print(f'model_final_inputs: {tokenizer.apply_chat_template(model_messages, add_generation_prompt=True, tokenize=False)}', flush=True)
        model_inputs = tokenizer.apply_chat_template(model_messages, add_generation_prompt=True, return_tensors="pt").to(device)
        # model_inputs = tokenizer([messages], return_tensors="pt").to(device)
        
        streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
        generate_kwargs = dict(
            input_ids=model_inputs,
            streamer=streamer,
            max_new_tokens=1024,
            do_sample=False,
            stopping_criteria=StoppingCriteriaList([stop])
        )
        
        t = Thread(target=model.generate, kwargs=generate_kwargs)
        t.start()  # Starting the generation in a separate thread.
        partial_message = ""
        for new_token in streamer:
            partial_message += new_token
            if sft_end_token in partial_message:  # Breaking the loop if the stop token is generated.
                break
            yield partial_message

    except Exception as e:
        print(traceback.format_exc())


css = """
full-height {
    height: 100%;
}
"""

prompt_examples = [
    'Write a quick sort algorithm in python.',
    'Write a greedy snake game using pygame.',
    'How to use numpy?'
]

placeholder = """
<div style="opacity: 0.5;">
    <img src="https://raw.githubusercontent.com/OpenCoder-llm/opencoder-llm.github.io/refs/heads/main/static/images/opencoder_icon.jpg" style="width:20%;">
</div>
"""


chatbot = gr.Chatbot(label='OpenCoder', placeholder=placeholder) 
with gr.Blocks(theme=gr.themes.Soft(), fill_height=True) as demo:
    
    gr.ChatInterface(predict, chatbot=chatbot, fill_height=True, examples=prompt_examples, css=css)

    demo.launch()  # Launching the web interface.