Spaces:
Running
on
Zero
Running
on
Zero
Zenithwang
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,108 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
-
|
27 |
|
28 |
-
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
|
|
|
|
42 |
|
|
|
|
|
|
|
|
|
|
|
43 |
"""
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
"""
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
-
|
62 |
-
|
63 |
-
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
+
import spaces
|
2 |
import gradio as gr
|
3 |
+
import torch
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
|
5 |
+
from threading import Thread
|
6 |
+
import traceback
|
7 |
|
8 |
+
model_path = 'infly/OpenCoder-8B-Instruct'
|
9 |
+
|
10 |
+
# Loading the tokenizer and model from Hugging Face's model hub.
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
12 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16)
|
13 |
+
|
14 |
+
# using CUDA for an optimal experience
|
15 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
16 |
+
model = model.to(device)
|
17 |
+
|
18 |
+
# Defining a custom stopping criteria class for the model's text generation.
|
19 |
+
class StopOnTokens(StoppingCriteria):
|
20 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
21 |
+
stop_ids = [96539] # IDs of tokens where the generation should stop.
|
22 |
+
for stop_id in stop_ids:
|
23 |
+
if input_ids[0][-1] == stop_id: # Checking if the last generated token is a stop token.
|
24 |
+
return True
|
25 |
+
return False
|
26 |
+
|
27 |
+
|
28 |
+
system_role= 'system'
|
29 |
+
user_role = 'user'
|
30 |
+
assistant_role = "assistant"
|
31 |
|
32 |
+
sft_start_token = "<|im_start|>"
|
33 |
+
sft_end_token = "<|im_end|>"
|
34 |
+
ct_end_token = "<|endoftext|>"
|
35 |
|
36 |
+
# system_prompt= 'You are a CodeLLM developed by INF.'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
# Function to generate model predictions.
|
40 |
|
41 |
+
@spaces.GPU()
|
42 |
+
def predict(message, history):
|
43 |
|
44 |
+
try:
|
45 |
+
stop = StopOnTokens()
|
46 |
+
|
47 |
+
model_messages = []
|
48 |
+
# print(f'history: {history}')
|
|
|
|
|
|
|
49 |
|
50 |
+
for i, item in enumerate(history):
|
51 |
+
model_messages.append({"role": user_role, "content": item[0]})
|
52 |
+
model_messages.append({"role": assistant_role, "content": item[1]})
|
53 |
+
|
54 |
+
model_messages.append({"role": user_role, "content": message})
|
55 |
+
|
56 |
+
print(f'model_messages: {model_messages}')
|
57 |
+
|
58 |
+
# print(f'model_final_inputs: {tokenizer.apply_chat_template(model_messages, add_generation_prompt=True, tokenize=False)}', flush=True)
|
59 |
+
model_inputs = tokenizer.apply_chat_template(model_messages, add_generation_prompt=True, return_tensors="pt").to(device)
|
60 |
+
# model_inputs = tokenizer([messages], return_tensors="pt").to(device)
|
61 |
+
|
62 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
63 |
+
generate_kwargs = dict(
|
64 |
+
input_ids=model_inputs,
|
65 |
+
streamer=streamer,
|
66 |
+
max_new_tokens=1024,
|
67 |
+
do_sample=False,
|
68 |
+
stopping_criteria=StoppingCriteriaList([stop])
|
69 |
+
)
|
70 |
+
|
71 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
72 |
+
t.start() # Starting the generation in a separate thread.
|
73 |
+
partial_message = ""
|
74 |
+
for new_token in streamer:
|
75 |
+
partial_message += new_token
|
76 |
+
if sft_end_token in partial_message: # Breaking the loop if the stop token is generated.
|
77 |
+
break
|
78 |
+
yield partial_message
|
79 |
|
80 |
+
except Exception as e:
|
81 |
+
print(traceback.format_exc())
|
82 |
|
83 |
+
|
84 |
+
css = """
|
85 |
+
full-height {
|
86 |
+
height: 100%;
|
87 |
+
}
|
88 |
"""
|
89 |
+
|
90 |
+
prompt_examples = [
|
91 |
+
'Write a quick sort algorithm in python.',
|
92 |
+
'Write a greedy snake game using pygame.',
|
93 |
+
'How to use numpy?'
|
94 |
+
]
|
95 |
+
|
96 |
+
placeholder = """
|
97 |
+
<div style="opacity: 0.5;">
|
98 |
+
<img src="https://raw.githubusercontent.com/OpenCoder-llm/opencoder-llm.github.io/refs/heads/main/static/images/opencoder_icon.jpg" style="width:20%;">
|
99 |
+
</div>
|
100 |
"""
|
101 |
+
|
102 |
+
|
103 |
+
chatbot = gr.Chatbot(label='OpenCoder', placeholder=placeholder)
|
104 |
+
with gr.Blocks(theme=gr.themes.Soft(), fill_height=True) as demo:
|
105 |
+
|
106 |
+
gr.ChatInterface(predict, chatbot=chatbot, fill_height=True, examples=prompt_examples, css=css)
|
107 |
+
|
108 |
+
demo.launch() # Launching the web interface.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|