File size: 7,482 Bytes
ab9cd73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

from __future__ import absolute_import

import sys
import torch
import torch.nn as nn
import torch.nn.init as init
from torch.autograd import Variable
import numpy as np
from pdb import set_trace as st
from skimage import color
from IPython import embed
from . import pretrained_networks as pn

from . import util


def spatial_average(in_tens, keepdim=True):
    return in_tens.mean([2,3],keepdim=keepdim)

def upsample(in_tens, out_H=64): # assumes scale factor is same for H and W
    in_H = in_tens.shape[2]
    scale_factor = 1.*out_H/in_H

    return nn.Upsample(scale_factor=scale_factor, mode='bilinear', align_corners=False)(in_tens)

# Learned perceptual metric
class PNetLin(nn.Module):
    def __init__(self, pnet_type='vgg', pnet_rand=False, pnet_tune=False, use_dropout=True, spatial=False, version='0.1', lpips=True):
        super(PNetLin, self).__init__()

        self.pnet_type = pnet_type
        self.pnet_tune = pnet_tune
        self.pnet_rand = pnet_rand
        self.spatial = spatial
        self.lpips = lpips
        self.version = version
        self.scaling_layer = ScalingLayer()

        if(self.pnet_type in ['vgg','vgg16']):
            net_type = pn.vgg16
            self.chns = [64,128,256,512,512]
        elif(self.pnet_type=='alex'):
            net_type = pn.alexnet
            self.chns = [64,192,384,256,256]
        elif(self.pnet_type=='squeeze'):
            net_type = pn.squeezenet
            self.chns = [64,128,256,384,384,512,512]
        self.L = len(self.chns)

        self.net = net_type(pretrained=not self.pnet_rand, requires_grad=self.pnet_tune)

        if(lpips):
            self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout)
            self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout)
            self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout)
            self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout)
            self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout)
            self.lins = [self.lin0,self.lin1,self.lin2,self.lin3,self.lin4]
            if(self.pnet_type=='squeeze'): # 7 layers for squeezenet
                self.lin5 = NetLinLayer(self.chns[5], use_dropout=use_dropout)
                self.lin6 = NetLinLayer(self.chns[6], use_dropout=use_dropout)
                self.lins+=[self.lin5,self.lin6]

    def forward(self, in0, in1, retPerLayer=False):
        # v0.0 - original release had a bug, where input was not scaled
        in0_input, in1_input = (self.scaling_layer(in0), self.scaling_layer(in1)) if self.version=='0.1' else (in0, in1)
        outs0, outs1 = self.net.forward(in0_input), self.net.forward(in1_input)
        feats0, feats1, diffs = {}, {}, {}

        for kk in range(self.L):
            feats0[kk], feats1[kk] = util.normalize_tensor(outs0[kk]), util.normalize_tensor(outs1[kk])
            diffs[kk] = (feats0[kk]-feats1[kk])**2

        if(self.lpips):
            if(self.spatial):
                res = [upsample(self.lins[kk].model(diffs[kk]), out_H=in0.shape[2]) for kk in range(self.L)]
            else:
                res = [spatial_average(self.lins[kk].model(diffs[kk]), keepdim=True) for kk in range(self.L)]
        else:
            if(self.spatial):
                res = [upsample(diffs[kk].sum(dim=1,keepdim=True), out_H=in0.shape[2]) for kk in range(self.L)]
            else:
                res = [spatial_average(diffs[kk].sum(dim=1,keepdim=True), keepdim=True) for kk in range(self.L)]

        val = res[0]
        for l in range(1,self.L):
            val += res[l]
        
        if(retPerLayer):
            return (val, res)
        else:
            return val

class ScalingLayer(nn.Module):
    def __init__(self):
        super(ScalingLayer, self).__init__()
        self.register_buffer('shift', torch.Tensor([-.030,-.088,-.188])[None,:,None,None])
        self.register_buffer('scale', torch.Tensor([.458,.448,.450])[None,:,None,None])

    def forward(self, inp):
        return (inp - self.shift) / self.scale


class NetLinLayer(nn.Module):
    ''' A single linear layer which does a 1x1 conv '''
    def __init__(self, chn_in, chn_out=1, use_dropout=False):
        super(NetLinLayer, self).__init__()

        layers = [nn.Dropout(),] if(use_dropout) else []
        layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False),]
        self.model = nn.Sequential(*layers)


class Dist2LogitLayer(nn.Module):
    ''' takes 2 distances, puts through fc layers, spits out value between [0,1] (if use_sigmoid is True) '''
    def __init__(self, chn_mid=32, use_sigmoid=True):
        super(Dist2LogitLayer, self).__init__()

        layers = [nn.Conv2d(5, chn_mid, 1, stride=1, padding=0, bias=True),]
        layers += [nn.LeakyReLU(0.2,True),]
        layers += [nn.Conv2d(chn_mid, chn_mid, 1, stride=1, padding=0, bias=True),]
        layers += [nn.LeakyReLU(0.2,True),]
        layers += [nn.Conv2d(chn_mid, 1, 1, stride=1, padding=0, bias=True),]
        if(use_sigmoid):
            layers += [nn.Sigmoid(),]
        self.model = nn.Sequential(*layers)

    def forward(self,d0,d1,eps=0.1):
        return self.model.forward(torch.cat((d0,d1,d0-d1,d0/(d1+eps),d1/(d0+eps)),dim=1))

class BCERankingLoss(nn.Module):
    def __init__(self, chn_mid=32):
        super(BCERankingLoss, self).__init__()
        self.net = Dist2LogitLayer(chn_mid=chn_mid)
        # self.parameters = list(self.net.parameters())
        self.loss = torch.nn.BCELoss()

    def forward(self, d0, d1, judge):
        per = (judge+1.)/2.
        self.logit = self.net.forward(d0,d1)
        return self.loss(self.logit, per)

# L2, DSSIM metrics
class FakeNet(nn.Module):
    def __init__(self, use_gpu=True, colorspace='Lab'):
        super(FakeNet, self).__init__()
        self.use_gpu = use_gpu
        self.colorspace=colorspace

class L2(FakeNet):

    def forward(self, in0, in1, retPerLayer=None):
        assert(in0.size()[0]==1) # currently only supports batchSize 1

        if(self.colorspace=='RGB'):
            (N,C,X,Y) = in0.size()
            value = torch.mean(torch.mean(torch.mean((in0-in1)**2,dim=1).view(N,1,X,Y),dim=2).view(N,1,1,Y),dim=3).view(N)
            return value
        elif(self.colorspace=='Lab'):
            value = util.l2(util.tensor2np(util.tensor2tensorlab(in0.data,to_norm=False)), 
                util.tensor2np(util.tensor2tensorlab(in1.data,to_norm=False)), range=100.).astype('float')
            ret_var = Variable( torch.Tensor((value,) ) )
            if(self.use_gpu):
                ret_var = ret_var.cuda()
            return ret_var

class DSSIM(FakeNet):

    def forward(self, in0, in1, retPerLayer=None):
        assert(in0.size()[0]==1) # currently only supports batchSize 1

        if(self.colorspace=='RGB'):
            value = util.dssim(1.*util.tensor2im(in0.data), 1.*util.tensor2im(in1.data), range=255.).astype('float')
        elif(self.colorspace=='Lab'):
            value = util.dssim(util.tensor2np(util.tensor2tensorlab(in0.data,to_norm=False)), 
                util.tensor2np(util.tensor2tensorlab(in1.data,to_norm=False)), range=100.).astype('float')
        ret_var = Variable( torch.Tensor((value,) ) )
        if(self.use_gpu):
            ret_var = ret_var.cuda()
        return ret_var

def print_network(net):
    num_params = 0
    for param in net.parameters():
        num_params += param.numel()
    print('Network',net)
    print('Total number of parameters: %d' % num_params)