Spaces:
Runtime error
Runtime error
File size: 7,482 Bytes
ab9cd73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
from __future__ import absolute_import
import sys
import torch
import torch.nn as nn
import torch.nn.init as init
from torch.autograd import Variable
import numpy as np
from pdb import set_trace as st
from skimage import color
from IPython import embed
from . import pretrained_networks as pn
from . import util
def spatial_average(in_tens, keepdim=True):
return in_tens.mean([2,3],keepdim=keepdim)
def upsample(in_tens, out_H=64): # assumes scale factor is same for H and W
in_H = in_tens.shape[2]
scale_factor = 1.*out_H/in_H
return nn.Upsample(scale_factor=scale_factor, mode='bilinear', align_corners=False)(in_tens)
# Learned perceptual metric
class PNetLin(nn.Module):
def __init__(self, pnet_type='vgg', pnet_rand=False, pnet_tune=False, use_dropout=True, spatial=False, version='0.1', lpips=True):
super(PNetLin, self).__init__()
self.pnet_type = pnet_type
self.pnet_tune = pnet_tune
self.pnet_rand = pnet_rand
self.spatial = spatial
self.lpips = lpips
self.version = version
self.scaling_layer = ScalingLayer()
if(self.pnet_type in ['vgg','vgg16']):
net_type = pn.vgg16
self.chns = [64,128,256,512,512]
elif(self.pnet_type=='alex'):
net_type = pn.alexnet
self.chns = [64,192,384,256,256]
elif(self.pnet_type=='squeeze'):
net_type = pn.squeezenet
self.chns = [64,128,256,384,384,512,512]
self.L = len(self.chns)
self.net = net_type(pretrained=not self.pnet_rand, requires_grad=self.pnet_tune)
if(lpips):
self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout)
self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout)
self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout)
self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout)
self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout)
self.lins = [self.lin0,self.lin1,self.lin2,self.lin3,self.lin4]
if(self.pnet_type=='squeeze'): # 7 layers for squeezenet
self.lin5 = NetLinLayer(self.chns[5], use_dropout=use_dropout)
self.lin6 = NetLinLayer(self.chns[6], use_dropout=use_dropout)
self.lins+=[self.lin5,self.lin6]
def forward(self, in0, in1, retPerLayer=False):
# v0.0 - original release had a bug, where input was not scaled
in0_input, in1_input = (self.scaling_layer(in0), self.scaling_layer(in1)) if self.version=='0.1' else (in0, in1)
outs0, outs1 = self.net.forward(in0_input), self.net.forward(in1_input)
feats0, feats1, diffs = {}, {}, {}
for kk in range(self.L):
feats0[kk], feats1[kk] = util.normalize_tensor(outs0[kk]), util.normalize_tensor(outs1[kk])
diffs[kk] = (feats0[kk]-feats1[kk])**2
if(self.lpips):
if(self.spatial):
res = [upsample(self.lins[kk].model(diffs[kk]), out_H=in0.shape[2]) for kk in range(self.L)]
else:
res = [spatial_average(self.lins[kk].model(diffs[kk]), keepdim=True) for kk in range(self.L)]
else:
if(self.spatial):
res = [upsample(diffs[kk].sum(dim=1,keepdim=True), out_H=in0.shape[2]) for kk in range(self.L)]
else:
res = [spatial_average(diffs[kk].sum(dim=1,keepdim=True), keepdim=True) for kk in range(self.L)]
val = res[0]
for l in range(1,self.L):
val += res[l]
if(retPerLayer):
return (val, res)
else:
return val
class ScalingLayer(nn.Module):
def __init__(self):
super(ScalingLayer, self).__init__()
self.register_buffer('shift', torch.Tensor([-.030,-.088,-.188])[None,:,None,None])
self.register_buffer('scale', torch.Tensor([.458,.448,.450])[None,:,None,None])
def forward(self, inp):
return (inp - self.shift) / self.scale
class NetLinLayer(nn.Module):
''' A single linear layer which does a 1x1 conv '''
def __init__(self, chn_in, chn_out=1, use_dropout=False):
super(NetLinLayer, self).__init__()
layers = [nn.Dropout(),] if(use_dropout) else []
layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False),]
self.model = nn.Sequential(*layers)
class Dist2LogitLayer(nn.Module):
''' takes 2 distances, puts through fc layers, spits out value between [0,1] (if use_sigmoid is True) '''
def __init__(self, chn_mid=32, use_sigmoid=True):
super(Dist2LogitLayer, self).__init__()
layers = [nn.Conv2d(5, chn_mid, 1, stride=1, padding=0, bias=True),]
layers += [nn.LeakyReLU(0.2,True),]
layers += [nn.Conv2d(chn_mid, chn_mid, 1, stride=1, padding=0, bias=True),]
layers += [nn.LeakyReLU(0.2,True),]
layers += [nn.Conv2d(chn_mid, 1, 1, stride=1, padding=0, bias=True),]
if(use_sigmoid):
layers += [nn.Sigmoid(),]
self.model = nn.Sequential(*layers)
def forward(self,d0,d1,eps=0.1):
return self.model.forward(torch.cat((d0,d1,d0-d1,d0/(d1+eps),d1/(d0+eps)),dim=1))
class BCERankingLoss(nn.Module):
def __init__(self, chn_mid=32):
super(BCERankingLoss, self).__init__()
self.net = Dist2LogitLayer(chn_mid=chn_mid)
# self.parameters = list(self.net.parameters())
self.loss = torch.nn.BCELoss()
def forward(self, d0, d1, judge):
per = (judge+1.)/2.
self.logit = self.net.forward(d0,d1)
return self.loss(self.logit, per)
# L2, DSSIM metrics
class FakeNet(nn.Module):
def __init__(self, use_gpu=True, colorspace='Lab'):
super(FakeNet, self).__init__()
self.use_gpu = use_gpu
self.colorspace=colorspace
class L2(FakeNet):
def forward(self, in0, in1, retPerLayer=None):
assert(in0.size()[0]==1) # currently only supports batchSize 1
if(self.colorspace=='RGB'):
(N,C,X,Y) = in0.size()
value = torch.mean(torch.mean(torch.mean((in0-in1)**2,dim=1).view(N,1,X,Y),dim=2).view(N,1,1,Y),dim=3).view(N)
return value
elif(self.colorspace=='Lab'):
value = util.l2(util.tensor2np(util.tensor2tensorlab(in0.data,to_norm=False)),
util.tensor2np(util.tensor2tensorlab(in1.data,to_norm=False)), range=100.).astype('float')
ret_var = Variable( torch.Tensor((value,) ) )
if(self.use_gpu):
ret_var = ret_var.cuda()
return ret_var
class DSSIM(FakeNet):
def forward(self, in0, in1, retPerLayer=None):
assert(in0.size()[0]==1) # currently only supports batchSize 1
if(self.colorspace=='RGB'):
value = util.dssim(1.*util.tensor2im(in0.data), 1.*util.tensor2im(in1.data), range=255.).astype('float')
elif(self.colorspace=='Lab'):
value = util.dssim(util.tensor2np(util.tensor2tensorlab(in0.data,to_norm=False)),
util.tensor2np(util.tensor2tensorlab(in1.data,to_norm=False)), range=100.).astype('float')
ret_var = Variable( torch.Tensor((value,) ) )
if(self.use_gpu):
ret_var = ret_var.cuda()
return ret_var
def print_network(net):
num_params = 0
for param in net.parameters():
num_params += param.numel()
print('Network',net)
print('Total number of parameters: %d' % num_params)
|