Spaces:
Runtime error
Runtime error
import math | |
import os | |
import torch | |
from torch import optim | |
from torch.nn import functional as FF | |
from torchvision import transforms | |
from PIL import Image | |
from tqdm import tqdm | |
import dataclasses | |
from .lpips import util | |
def noise_regularize(noises): | |
loss = 0 | |
for noise in noises: | |
size = noise.shape[2] | |
while True: | |
loss = ( | |
loss | |
+ (noise * torch.roll(noise, shifts=1, dims=3)).mean().pow(2) | |
+ (noise * torch.roll(noise, shifts=1, dims=2)).mean().pow(2) | |
) | |
if size <= 8: | |
break | |
noise = noise.reshape([-1, 1, size // 2, 2, size // 2, 2]) | |
noise = noise.mean([3, 5]) | |
size //= 2 | |
return loss | |
def noise_normalize_(noises): | |
for noise in noises: | |
mean = noise.mean() | |
std = noise.std() | |
noise.data.add_(-mean).div_(std) | |
def get_lr(t, initial_lr, rampdown=0.25, rampup=0.05): | |
lr_ramp = min(1, (1 - t) / rampdown) | |
lr_ramp = 0.5 - 0.5 * math.cos(lr_ramp * math.pi) | |
lr_ramp = lr_ramp * min(1, t / rampup) | |
return initial_lr * lr_ramp | |
def latent_noise(latent, strength): | |
noise = torch.randn_like(latent) * strength | |
return latent + noise | |
def make_image(tensor): | |
return ( | |
tensor.detach() | |
.clamp_(min=-1, max=1) | |
.add(1) | |
.div_(2) | |
.mul(255) | |
.type(torch.uint8) | |
.permute(0, 2, 3, 1) | |
.to("cpu") | |
.numpy() | |
) | |
class InverseConfig: | |
lr_warmup = 0.05 | |
lr_decay = 0.25 | |
lr = 0.1 | |
noise = 0.05 | |
noise_decay = 0.75 | |
step = 1000 | |
noise_regularize = 1e5 | |
mse = 0 | |
w_plus = False, | |
def inverse_image( | |
g_ema, | |
image, | |
image_size=256, | |
config=InverseConfig() | |
): | |
device = "cuda" | |
args = config | |
n_mean_latent = 10000 | |
resize = min(image_size, 256) | |
transform = transforms.Compose( | |
[ | |
transforms.Resize(resize), | |
transforms.CenterCrop(resize), | |
transforms.ToTensor(), | |
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), | |
] | |
) | |
imgs = [] | |
img = transform(image) | |
imgs.append(img) | |
imgs = torch.stack(imgs, 0).to(device) | |
with torch.no_grad(): | |
noise_sample = torch.randn(n_mean_latent, 512, device=device) | |
latent_out = g_ema.style(noise_sample) | |
latent_mean = latent_out.mean(0) | |
latent_std = ((latent_out - latent_mean).pow(2).sum() / n_mean_latent) ** 0.5 | |
percept = util.PerceptualLoss( | |
model="net-lin", net="vgg", use_gpu=device.startswith("cuda") | |
) | |
noises_single = g_ema.make_noise() | |
noises = [] | |
for noise in noises_single: | |
noises.append(noise.repeat(imgs.shape[0], 1, 1, 1).normal_()) | |
latent_in = latent_mean.detach().clone().unsqueeze(0).repeat(imgs.shape[0], 1) | |
if args.w_plus: | |
latent_in = latent_in.unsqueeze(1).repeat(1, g_ema.n_latent, 1) | |
latent_in.requires_grad = True | |
for noise in noises: | |
noise.requires_grad = True | |
optimizer = optim.Adam([latent_in] + noises, lr=args.lr) | |
pbar = tqdm(range(args.step)) | |
latent_path = [] | |
for i in pbar: | |
t = i / args.step | |
lr = get_lr(t, args.lr) | |
optimizer.param_groups[0]["lr"] = lr | |
noise_strength = latent_std * args.noise * max(0, 1 - t / args.noise_decay) ** 2 | |
latent_n = latent_noise(latent_in, noise_strength.item()) | |
latent, noise = g_ema.prepare([latent_n], input_is_latent=True, noise=noises) | |
img_gen, F = g_ema.generate(latent, noise) | |
batch, channel, height, width = img_gen.shape | |
if height > 256: | |
factor = height // 256 | |
img_gen = img_gen.reshape( | |
batch, channel, height // factor, factor, width // factor, factor | |
) | |
img_gen = img_gen.mean([3, 5]) | |
p_loss = percept(img_gen, imgs).sum() | |
n_loss = noise_regularize(noises) | |
mse_loss = FF.mse_loss(img_gen, imgs) | |
loss = p_loss + args.noise_regularize * n_loss + args.mse * mse_loss | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
noise_normalize_(noises) | |
if (i + 1) % 100 == 0: | |
latent_path.append(latent_in.detach().clone()) | |
pbar.set_description( | |
( | |
f"perceptual: {p_loss.item():.4f}; noise regularize: {n_loss.item():.4f};" | |
f" mse: {mse_loss.item():.4f}; lr: {lr:.4f}" | |
) | |
) | |
latent, noise = g_ema.prepare([latent_path[-1]], input_is_latent=True, noise=noises) | |
img_gen, F = g_ema.generate(latent, noise) | |
img_ar = make_image(img_gen) | |
i = 0 | |
noise_single = [] | |
for noise in noises: | |
noise_single.append(noise[i: i + 1]) | |
result = { | |
"latent": latent, | |
"noise": noise_single, | |
'F': F, | |
"sample": img_gen, | |
} | |
pil_img = Image.fromarray(img_ar[i]) | |
pil_img.save('project.png') | |
return result | |