DragGAN / stylegan2 /lpips /dist_model.py
aaronb's picture
update
ab9cd73
from __future__ import absolute_import
import sys
import numpy as np
import torch
from torch import nn
import os
from collections import OrderedDict
from torch.autograd import Variable
import itertools
from .base_model import BaseModel
from scipy.ndimage import zoom
import fractions
import functools
import skimage.transform
from tqdm import tqdm
import urllib
from IPython import embed
from . import networks_basic as networks
from . import util
class DownloadProgressBar(tqdm):
def update_to(self, b=1, bsize=1, tsize=None):
if tsize is not None:
self.total = tsize
self.update(b * bsize - self.n)
def get_path(base_path):
BASE_DIR = os.path.join('checkpoints')
save_path = os.path.join(BASE_DIR, base_path)
if not os.path.exists(save_path):
url = f"https://huggingface.co/aaronb/StyleGAN2/resolve/main/{base_path}"
print(f'{base_path} not found')
print('Try to download from huggingface: ', url)
os.makedirs(os.path.dirname(save_path), exist_ok=True)
download_url(url, save_path)
print('Downloaded to ', save_path)
return save_path
def download_url(url, output_path):
with DownloadProgressBar(unit='B', unit_scale=True,
miniters=1, desc=url.split('/')[-1]) as t:
urllib.request.urlretrieve(url, filename=output_path, reporthook=t.update_to)
class DistModel(BaseModel):
def name(self):
return self.model_name
def initialize(self, model='net-lin', net='alex', colorspace='Lab', pnet_rand=False, pnet_tune=False, model_path=None,
use_gpu=True, printNet=False, spatial=False,
is_train=False, lr=.0001, beta1=0.5, version='0.1', gpu_ids=[0]):
'''
INPUTS
model - ['net-lin'] for linearly calibrated network
['net'] for off-the-shelf network
['L2'] for L2 distance in Lab colorspace
['SSIM'] for ssim in RGB colorspace
net - ['squeeze','alex','vgg']
model_path - if None, will look in weights/[NET_NAME].pth
colorspace - ['Lab','RGB'] colorspace to use for L2 and SSIM
use_gpu - bool - whether or not to use a GPU
printNet - bool - whether or not to print network architecture out
spatial - bool - whether to output an array containing varying distances across spatial dimensions
spatial_shape - if given, output spatial shape. if None then spatial shape is determined automatically via spatial_factor (see below).
spatial_factor - if given, specifies upsampling factor relative to the largest spatial extent of a convolutional layer. if None then resized to size of input images.
spatial_order - spline order of filter for upsampling in spatial mode, by default 1 (bilinear).
is_train - bool - [True] for training mode
lr - float - initial learning rate
beta1 - float - initial momentum term for adam
version - 0.1 for latest, 0.0 was original (with a bug)
gpu_ids - int array - [0] by default, gpus to use
'''
BaseModel.initialize(self, use_gpu=use_gpu, gpu_ids=gpu_ids)
self.model = model
self.net = net
self.is_train = is_train
self.spatial = spatial
self.gpu_ids = gpu_ids
self.model_name = '%s [%s]' % (model, net)
if(self.model == 'net-lin'): # pretrained net + linear layer
self.net = networks.PNetLin(pnet_rand=pnet_rand, pnet_tune=pnet_tune, pnet_type=net,
use_dropout=True, spatial=spatial, version=version, lpips=True)
kw = {}
if not use_gpu:
kw['map_location'] = 'cpu'
if(model_path is None):
model_path = get_path('weights/v%s/%s.pth' % (version, net))
if(not is_train):
print('Loading model from: %s' % model_path)
self.net.load_state_dict(torch.load(model_path, **kw), strict=False)
elif(self.model == 'net'): # pretrained network
self.net = networks.PNetLin(pnet_rand=pnet_rand, pnet_type=net, lpips=False)
elif(self.model in ['L2', 'l2']):
self.net = networks.L2(use_gpu=use_gpu, colorspace=colorspace) # not really a network, only for testing
self.model_name = 'L2'
elif(self.model in ['DSSIM', 'dssim', 'SSIM', 'ssim']):
self.net = networks.DSSIM(use_gpu=use_gpu, colorspace=colorspace)
self.model_name = 'SSIM'
else:
raise ValueError("Model [%s] not recognized." % self.model)
self.parameters = list(self.net.parameters())
if self.is_train: # training mode
# extra network on top to go from distances (d0,d1) => predicted human judgment (h*)
self.rankLoss = networks.BCERankingLoss()
self.parameters += list(self.rankLoss.net.parameters())
self.lr = lr
self.old_lr = lr
self.optimizer_net = torch.optim.Adam(self.parameters, lr=lr, betas=(beta1, 0.999))
else: # test mode
self.net.eval()
if(use_gpu):
self.net.to(gpu_ids[0])
self.net = torch.nn.DataParallel(self.net, device_ids=gpu_ids)
if(self.is_train):
self.rankLoss = self.rankLoss.to(device=gpu_ids[0]) # just put this on GPU0
if(printNet):
print('---------- Networks initialized -------------')
networks.print_network(self.net)
print('-----------------------------------------------')
def forward(self, in0, in1, retPerLayer=False):
''' Function computes the distance between image patches in0 and in1
INPUTS
in0, in1 - torch.Tensor object of shape Nx3xXxY - image patch scaled to [-1,1]
OUTPUT
computed distances between in0 and in1
'''
return self.net.forward(in0, in1, retPerLayer=retPerLayer)
# ***** TRAINING FUNCTIONS *****
def optimize_parameters(self):
self.forward_train()
self.optimizer_net.zero_grad()
self.backward_train()
self.optimizer_net.step()
self.clamp_weights()
def clamp_weights(self):
for module in self.net.modules():
if(hasattr(module, 'weight') and module.kernel_size == (1, 1)):
module.weight.data = torch.clamp(module.weight.data, min=0)
def set_input(self, data):
self.input_ref = data['ref']
self.input_p0 = data['p0']
self.input_p1 = data['p1']
self.input_judge = data['judge']
if(self.use_gpu):
self.input_ref = self.input_ref.to(device=self.gpu_ids[0])
self.input_p0 = self.input_p0.to(device=self.gpu_ids[0])
self.input_p1 = self.input_p1.to(device=self.gpu_ids[0])
self.input_judge = self.input_judge.to(device=self.gpu_ids[0])
self.var_ref = Variable(self.input_ref, requires_grad=True)
self.var_p0 = Variable(self.input_p0, requires_grad=True)
self.var_p1 = Variable(self.input_p1, requires_grad=True)
def forward_train(self): # run forward pass
# print(self.net.module.scaling_layer.shift)
# print(torch.norm(self.net.module.net.slice1[0].weight).item(), torch.norm(self.net.module.lin0.model[1].weight).item())
self.d0 = self.forward(self.var_ref, self.var_p0)
self.d1 = self.forward(self.var_ref, self.var_p1)
self.acc_r = self.compute_accuracy(self.d0, self.d1, self.input_judge)
self.var_judge = Variable(1. * self.input_judge).view(self.d0.size())
self.loss_total = self.rankLoss.forward(self.d0, self.d1, self.var_judge * 2. - 1.)
return self.loss_total
def backward_train(self):
torch.mean(self.loss_total).backward()
def compute_accuracy(self, d0, d1, judge):
''' d0, d1 are Variables, judge is a Tensor '''
d1_lt_d0 = (d1 < d0).cpu().data.numpy().flatten()
judge_per = judge.cpu().numpy().flatten()
return d1_lt_d0 * judge_per + (1 - d1_lt_d0) * (1 - judge_per)
def get_current_errors(self):
retDict = OrderedDict([('loss_total', self.loss_total.data.cpu().numpy()),
('acc_r', self.acc_r)])
for key in retDict.keys():
retDict[key] = np.mean(retDict[key])
return retDict
def get_current_visuals(self):
zoom_factor = 256 / self.var_ref.data.size()[2]
ref_img = util.tensor2im(self.var_ref.data)
p0_img = util.tensor2im(self.var_p0.data)
p1_img = util.tensor2im(self.var_p1.data)
ref_img_vis = zoom(ref_img, [zoom_factor, zoom_factor, 1], order=0)
p0_img_vis = zoom(p0_img, [zoom_factor, zoom_factor, 1], order=0)
p1_img_vis = zoom(p1_img, [zoom_factor, zoom_factor, 1], order=0)
return OrderedDict([('ref', ref_img_vis),
('p0', p0_img_vis),
('p1', p1_img_vis)])
def save(self, path, label):
if(self.use_gpu):
self.save_network(self.net.module, path, '', label)
else:
self.save_network(self.net, path, '', label)
self.save_network(self.rankLoss.net, path, 'rank', label)
def update_learning_rate(self, nepoch_decay):
lrd = self.lr / nepoch_decay
lr = self.old_lr - lrd
for param_group in self.optimizer_net.param_groups:
param_group['lr'] = lr
print('update lr [%s] decay: %f -> %f' % (type, self.old_lr, lr))
self.old_lr = lr
def score_2afc_dataset(data_loader, func, name=''):
''' Function computes Two Alternative Forced Choice (2AFC) score using
distance function 'func' in dataset 'data_loader'
INPUTS
data_loader - CustomDatasetDataLoader object - contains a TwoAFCDataset inside
func - callable distance function - calling d=func(in0,in1) should take 2
pytorch tensors with shape Nx3xXxY, and return numpy array of length N
OUTPUTS
[0] - 2AFC score in [0,1], fraction of time func agrees with human evaluators
[1] - dictionary with following elements
d0s,d1s - N arrays containing distances between reference patch to perturbed patches
gts - N array in [0,1], preferred patch selected by human evaluators
(closer to "0" for left patch p0, "1" for right patch p1,
"0.6" means 60pct people preferred right patch, 40pct preferred left)
scores - N array in [0,1], corresponding to what percentage function agreed with humans
CONSTS
N - number of test triplets in data_loader
'''
d0s = []
d1s = []
gts = []
for data in tqdm(data_loader.load_data(), desc=name):
d0s += func(data['ref'], data['p0']).data.cpu().numpy().flatten().tolist()
d1s += func(data['ref'], data['p1']).data.cpu().numpy().flatten().tolist()
gts += data['judge'].cpu().numpy().flatten().tolist()
d0s = np.array(d0s)
d1s = np.array(d1s)
gts = np.array(gts)
scores = (d0s < d1s) * (1. - gts) + (d1s < d0s) * gts + (d1s == d0s) * .5
return(np.mean(scores), dict(d0s=d0s, d1s=d1s, gts=gts, scores=scores))
def score_jnd_dataset(data_loader, func, name=''):
''' Function computes JND score using distance function 'func' in dataset 'data_loader'
INPUTS
data_loader - CustomDatasetDataLoader object - contains a JNDDataset inside
func - callable distance function - calling d=func(in0,in1) should take 2
pytorch tensors with shape Nx3xXxY, and return pytorch array of length N
OUTPUTS
[0] - JND score in [0,1], mAP score (area under precision-recall curve)
[1] - dictionary with following elements
ds - N array containing distances between two patches shown to human evaluator
sames - N array containing fraction of people who thought the two patches were identical
CONSTS
N - number of test triplets in data_loader
'''
ds = []
gts = []
for data in tqdm(data_loader.load_data(), desc=name):
ds += func(data['p0'], data['p1']).data.cpu().numpy().tolist()
gts += data['same'].cpu().numpy().flatten().tolist()
sames = np.array(gts)
ds = np.array(ds)
sorted_inds = np.argsort(ds)
ds_sorted = ds[sorted_inds]
sames_sorted = sames[sorted_inds]
TPs = np.cumsum(sames_sorted)
FPs = np.cumsum(1 - sames_sorted)
FNs = np.sum(sames_sorted) - TPs
precs = TPs / (TPs + FPs)
recs = TPs / (TPs + FNs)
score = util.voc_ap(recs, precs)
return(score, dict(ds=ds, sames=sames))