Upload 5 files
Browse files- Welcome.py +98 -0
- mediapipe_functions.py +45 -0
- requirements.txt +780 -0
- sign_to_prediction_index_map.json +1 -0
- utils.py +12 -0
Welcome.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Importing necessary libraries
|
2 |
+
import streamlit as st
|
3 |
+
import cv2
|
4 |
+
import json
|
5 |
+
import numpy as np
|
6 |
+
import threading
|
7 |
+
import time
|
8 |
+
import pandas as pd
|
9 |
+
import mediapipe as mp
|
10 |
+
import tensorflow as tf
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
import streamlit.components.v1 as com
|
13 |
+
from mediapipe_functions import *
|
14 |
+
import tempfile
|
15 |
+
from streamlit_lottie import st_lottie
|
16 |
+
|
17 |
+
st.set_page_config(
|
18 |
+
page_title="Welcome to iSLR",
|
19 |
+
page_icon="👋",
|
20 |
+
)
|
21 |
+
|
22 |
+
# st.markdown("""
|
23 |
+
# <style>
|
24 |
+
# .css-9s5bis.edgvbvh3
|
25 |
+
# {
|
26 |
+
# visibility:hidden
|
27 |
+
# }
|
28 |
+
# .css-h5rgaw.egzxvld1
|
29 |
+
# {
|
30 |
+
# visibility:hidden
|
31 |
+
# }
|
32 |
+
# </style>
|
33 |
+
# """, unsafe_allow_html=True)
|
34 |
+
|
35 |
+
st.sidebar.success("Select a demo above.")
|
36 |
+
|
37 |
+
st.title("ASL Sign Language Recognition App")
|
38 |
+
|
39 |
+
f=st.file_uploader("Please upload a video of a demo of ASL sign", type=['mp4'])
|
40 |
+
|
41 |
+
if f is not None:
|
42 |
+
tfile = tempfile.NamedTemporaryFile(delete=False)
|
43 |
+
tfile.write(f.read())
|
44 |
+
|
45 |
+
st.sidebar.video(tfile.name)
|
46 |
+
cap = cv2.VideoCapture(tfile.name)
|
47 |
+
stframe = st.empty()
|
48 |
+
|
49 |
+
# for local video file
|
50 |
+
# cap = cv2.VideoCapture('videos\goodbye.mp4')
|
51 |
+
|
52 |
+
final_landmarks=[]
|
53 |
+
with mp_holistic.Holistic(min_detection_confidence=0.5, min_tracking_confidence=0.5) as holistic:
|
54 |
+
while cap.isOpened():
|
55 |
+
ret, frame = cap.read()
|
56 |
+
if not ret:
|
57 |
+
break
|
58 |
+
image, results = mediapipe_detection(frame, holistic)
|
59 |
+
draw(image, results)
|
60 |
+
landmarks = extract_coordinates(results)
|
61 |
+
final_landmarks.extend(landmarks)
|
62 |
+
|
63 |
+
df1 = pd.DataFrame(final_landmarks,columns=['x','y','z'])
|
64 |
+
|
65 |
+
# Necessary functions
|
66 |
+
ROWS_PER_FRAME = 543
|
67 |
+
def load_relevant_data_subset(df):
|
68 |
+
data_columns = ['x', 'y', 'z']
|
69 |
+
data = df
|
70 |
+
n_frames = int(len(data) / ROWS_PER_FRAME)
|
71 |
+
data = data.values.reshape(n_frames, ROWS_PER_FRAME, len(data_columns))
|
72 |
+
return data.astype(np.float32)
|
73 |
+
|
74 |
+
# Loading data
|
75 |
+
test_df = load_relevant_data_subset(df1)
|
76 |
+
test_df = tf.convert_to_tensor(test_df)
|
77 |
+
|
78 |
+
# Inference
|
79 |
+
interpreter = tf.lite.Interpreter("code\model.tflite")
|
80 |
+
prediction_fn = interpreter.get_signature_runner("serving_default")
|
81 |
+
output = prediction_fn(inputs=test_df)
|
82 |
+
sign = np.argmax(output["outputs"])
|
83 |
+
|
84 |
+
sign_json=pd.read_json("code\sign_to_prediction_index_map.json",typ='series')
|
85 |
+
sign_df=pd.DataFrame(sign_json)
|
86 |
+
sign_df.iloc[sign]
|
87 |
+
top_indices = np.argsort(output['outputs'])[::-1][:5]
|
88 |
+
top_values = output['outputs'][top_indices]
|
89 |
+
|
90 |
+
output_df = sign_df.iloc[top_indices]
|
91 |
+
output_df['Value'] = top_values
|
92 |
+
output_df.rename(columns = {0:'Index'}, inplace = True)
|
93 |
+
st.write(output_df)
|
94 |
+
# callbacks : on_change, on_click
|
95 |
+
# com.iframe("https://embed.lottiefiles.com/animation/132349")
|
96 |
+
with open('assets\\animations\\14592-loader-cat.json') as source:
|
97 |
+
animation=json.load(source)
|
98 |
+
st_lottie(animation, width=300)
|
mediapipe_functions.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import mediapipe as mp
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
mp_holistic = mp.solutions.holistic # holistic model
|
6 |
+
mp_drawing = mp.solutions.drawing_utils # drawing utilities
|
7 |
+
|
8 |
+
def mediapipe_detection(image, model):
|
9 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # color conversion
|
10 |
+
image.flags.writeable = False # img no longer writeable
|
11 |
+
landmarks = model.process(image) # make landmark prediction
|
12 |
+
image.flags.writeable = True # img now writeable
|
13 |
+
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # color reconversion
|
14 |
+
return image, landmarks
|
15 |
+
|
16 |
+
def draw(image, results):
|
17 |
+
mp_drawing.draw_landmarks(image, results.face_landmarks, mp_holistic.FACEMESH_TESSELATION,
|
18 |
+
mp_drawing.DrawingSpec(color=(0,0,255), thickness=3, circle_radius=3),
|
19 |
+
mp_drawing.DrawingSpec(color=(0,0,0), thickness=1, circle_radius=0))
|
20 |
+
mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_holistic.POSE_CONNECTIONS,
|
21 |
+
mp_drawing.DrawingSpec(color=(0,150,0), thickness=3, circle_radius=3),
|
22 |
+
mp_drawing.DrawingSpec(color=(0,0,0), thickness=2, circle_radius=2))
|
23 |
+
mp_drawing.draw_landmarks(image, results.left_hand_landmarks, mp_holistic.HAND_CONNECTIONS,
|
24 |
+
mp_drawing.DrawingSpec(color=(200,56,12), thickness=3, circle_radius=3),
|
25 |
+
mp_drawing.DrawingSpec(color=(0,0,0), thickness=2, circle_radius=2))
|
26 |
+
mp_drawing.draw_landmarks(image, results.right_hand_landmarks, mp_holistic.HAND_CONNECTIONS,
|
27 |
+
mp_drawing.DrawingSpec(color=(250,56,12), thickness=3, circle_radius=3),
|
28 |
+
mp_drawing.DrawingSpec(color=(0,0,0), thickness=2, circle_radius=2))
|
29 |
+
|
30 |
+
def extract_coordinates(results):
|
31 |
+
face = np.array([[res.x, res.y, res.z] for res in results.face_landmarks.landmark]) if results.face_landmarks else np.empty((468, 3))*np.nan
|
32 |
+
pose = np.array([[res.x, res.y, res.z] for res in results.pose_landmarks.landmark]) if results.pose_landmarks else np.empty((33, 3))*np.nan
|
33 |
+
lh = np.array([[res.x, res.y, res.z] for res in results.left_hand_landmarks.landmark]) if results.left_hand_landmarks else np.empty((21, 3))*np.nan
|
34 |
+
rh = np.array([[res.x, res.y, res.z] for res in results.right_hand_landmarks.landmark]) if results.right_hand_landmarks else np.empty((21, 3))*np.nan
|
35 |
+
return np.concatenate([face, lh, pose, rh])
|
36 |
+
|
37 |
+
def extract_landmarks(frames):
|
38 |
+
final_landmarks = []
|
39 |
+
with mp_holistic.Holistic(min_detection_confidence=0.5, min_tracking_confidence=0.5) as holistic:
|
40 |
+
for frame in frames:
|
41 |
+
image, results = mediapipe_detection(frame, holistic)
|
42 |
+
draw(image, results)
|
43 |
+
landmarks = extract_coordinates(results)
|
44 |
+
final_landmarks.extend(landmarks)
|
45 |
+
return final_landmarks
|
requirements.txt
ADDED
@@ -0,0 +1,780 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
absl-py==1.4.0
|
2 |
+
accelerate==0.12.0
|
3 |
+
access==1.1.8
|
4 |
+
affine==2.4.0
|
5 |
+
aiobotocore==2.4.2
|
6 |
+
aiohttp @ file:///home/conda/feedstock_root/build_artifacts/aiohttp_1663850771047/work
|
7 |
+
aiohttp-cors==0.7.0
|
8 |
+
aioitertools==0.11.0
|
9 |
+
aiorwlock==1.3.0
|
10 |
+
aiosignal @ file:///home/conda/feedstock_root/build_artifacts/aiosignal_1667935791922/work
|
11 |
+
albumentations==1.3.0
|
12 |
+
alembic==1.9.4
|
13 |
+
altair==4.2.2
|
14 |
+
annoy==1.17.1
|
15 |
+
ansiwrap==0.8.4
|
16 |
+
anyio @ file:///home/conda/feedstock_root/build_artifacts/anyio_1666191106763/work/dist
|
17 |
+
apache-beam==2.44.0
|
18 |
+
aplus==0.11.0
|
19 |
+
appdirs==1.4.4
|
20 |
+
argon2-cffi @ file:///home/conda/feedstock_root/build_artifacts/argon2-cffi_1640817743617/work
|
21 |
+
argon2-cffi-bindings @ file:///home/conda/feedstock_root/build_artifacts/argon2-cffi-bindings_1649500320262/work
|
22 |
+
arrow==1.2.3
|
23 |
+
arviz==0.12.1
|
24 |
+
astroid==2.14.2
|
25 |
+
astropy==4.3.1
|
26 |
+
astunparse==1.6.3
|
27 |
+
async-timeout @ file:///home/conda/feedstock_root/build_artifacts/async-timeout_1640026696943/work
|
28 |
+
asynctest==0.13.0
|
29 |
+
atpublic==2.3
|
30 |
+
attrs @ file:///home/conda/feedstock_root/build_artifacts/attrs_1671632566681/work
|
31 |
+
audioread==3.0.0
|
32 |
+
autocfg==0.0.8
|
33 |
+
autopep8==1.6.0
|
34 |
+
aws-requests-auth==0.4.3
|
35 |
+
Babel==2.11.0
|
36 |
+
backcall @ file:///home/conda/feedstock_root/build_artifacts/backcall_1592338393461/work
|
37 |
+
backoff==1.10.0
|
38 |
+
backports.functools-lru-cache @ file:///home/conda/feedstock_root/build_artifacts/backports.functools_lru_cache_1618230623929/work
|
39 |
+
backports.zoneinfo==0.2.1
|
40 |
+
bayesian-optimization==1.4.2
|
41 |
+
bayespy==0.5.25
|
42 |
+
beatrix-jupyterlab @ file:///home/kbuilder/miniconda3/conda-bld/dlenv-tf-2-11-cpu_1674530713176/work/beatrix_jupyterlab-2023.123.173907.tar.gz
|
43 |
+
beautifulsoup4 @ file:///home/conda/feedstock_root/build_artifacts/beautifulsoup4_1649463573192/work
|
44 |
+
bidict==0.22.1
|
45 |
+
biopython==1.81
|
46 |
+
blake3==0.2.1
|
47 |
+
bleach==6.0.0
|
48 |
+
blessed==1.19.1
|
49 |
+
blis==0.7.9
|
50 |
+
bokeh==2.4.3
|
51 |
+
Boruta==0.3
|
52 |
+
boto3==1.26.77
|
53 |
+
botocore==1.27.59
|
54 |
+
-e git+https://github.com/SohierDane/BigQuery_Helper@8615a7f6c1663e7f2d48aa2b32c2dbcb600a440f#egg=bq_helper
|
55 |
+
bqplot==0.12.36
|
56 |
+
branca==0.6.0
|
57 |
+
brewer2mpl==1.4.1
|
58 |
+
brotlipy==0.7.0
|
59 |
+
cached-property==1.5.2
|
60 |
+
cachetools==4.2.4
|
61 |
+
Cartopy @ file:///home/conda/feedstock_root/build_artifacts/cartopy_1630680835556/work
|
62 |
+
catalogue==2.0.8
|
63 |
+
catalyst==22.4
|
64 |
+
catboost==1.1.1
|
65 |
+
category-encoders==2.6.0
|
66 |
+
certifi==2022.12.7
|
67 |
+
cesium==0.10.1
|
68 |
+
cffi @ file:///home/conda/feedstock_root/build_artifacts/cffi_1666183775483/work
|
69 |
+
cftime==1.6.2
|
70 |
+
charset-normalizer @ file:///home/conda/feedstock_root/build_artifacts/charset-normalizer_1661170624537/work
|
71 |
+
chex==0.1.5
|
72 |
+
cleverhans==4.0.0
|
73 |
+
click==8.1.3
|
74 |
+
click-plugins==1.1.1
|
75 |
+
cligj==0.7.2
|
76 |
+
cloud-tpu-client==0.10
|
77 |
+
cloud-tpu-profiler==2.4.0
|
78 |
+
cloudpickle==2.2.1
|
79 |
+
cmaes==0.9.1
|
80 |
+
cmake==3.25.0
|
81 |
+
cmdstanpy==1.1.0
|
82 |
+
cmudict==1.0.13
|
83 |
+
colorama==0.4.6
|
84 |
+
colorcet==3.0.1
|
85 |
+
colorful==0.5.5
|
86 |
+
colorlog==6.7.0
|
87 |
+
colorlover==0.3.0
|
88 |
+
conda==22.9.0
|
89 |
+
conda-content-trust @ file:///tmp/build/80754af9/conda-content-trust_1617045594566/work
|
90 |
+
conda-package-handling @ file:///home/conda/feedstock_root/build_artifacts/conda-package-handling_1669907009957/work
|
91 |
+
conda_package_streaming @ file:///home/conda/feedstock_root/build_artifacts/conda-package-streaming_1669733752472/work
|
92 |
+
confection==0.0.4
|
93 |
+
contextily==1.3.0
|
94 |
+
convertdate==2.4.0
|
95 |
+
crcmod==1.7
|
96 |
+
cryptography @ file:///home/conda/feedstock_root/build_artifacts/cryptography_1666563349571/work
|
97 |
+
cufflinks==0.17.3
|
98 |
+
CVXcanon==0.1.2
|
99 |
+
cycler @ file:///home/conda/feedstock_root/build_artifacts/cycler_1635519461629/work
|
100 |
+
cymem==2.0.7
|
101 |
+
cysignals==1.11.2
|
102 |
+
Cython==0.29.33
|
103 |
+
cytoolz==0.12.1
|
104 |
+
daal==2021.6.0
|
105 |
+
daal4py==2021.6.3
|
106 |
+
dask==2022.2.0
|
107 |
+
datasets==2.1.0
|
108 |
+
datashader==0.14.4
|
109 |
+
datashape==0.5.2
|
110 |
+
datatable==1.0.0
|
111 |
+
datatile==1.0.3
|
112 |
+
db-dtypes==1.0.5
|
113 |
+
deap==1.3.3
|
114 |
+
debugpy==1.6.6
|
115 |
+
decorator @ file:///home/conda/feedstock_root/build_artifacts/decorator_1641555617451/work
|
116 |
+
defusedxml @ file:///home/conda/feedstock_root/build_artifacts/defusedxml_1615232257335/work
|
117 |
+
Delorean==1.0.0
|
118 |
+
deprecat==2.1.1
|
119 |
+
deprecation==2.1.0
|
120 |
+
descartes==1.1.0
|
121 |
+
dill==0.3.6
|
122 |
+
dipy==1.6.0
|
123 |
+
distlib==0.3.6
|
124 |
+
distributed==2022.2.0
|
125 |
+
dm-tree==0.1.8
|
126 |
+
docker==6.0.1
|
127 |
+
docker-pycreds==0.4.0
|
128 |
+
docopt==0.6.2
|
129 |
+
docstring-to-markdown==0.11
|
130 |
+
docutils==0.19
|
131 |
+
earthengine-api==0.1.342
|
132 |
+
easydict==1.10
|
133 |
+
easyocr==1.6.2
|
134 |
+
ecos==2.0.12
|
135 |
+
eli5==0.13.0
|
136 |
+
emoji==2.2.0
|
137 |
+
en-core-web-lg @ https://github.com/explosion/spacy-models/releases/download/en_core_web_lg-3.5.0/en_core_web_lg-3.5.0-py3-none-any.whl
|
138 |
+
en-core-web-sm @ https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.5.0/en_core_web_sm-3.5.0-py3-none-any.whl
|
139 |
+
entrypoints @ file:///home/conda/feedstock_root/build_artifacts/entrypoints_1643888246732/work
|
140 |
+
ephem==4.1.4
|
141 |
+
esda==2.4.3
|
142 |
+
essentia==2.1b6.dev858
|
143 |
+
et-xmlfile==1.1.0
|
144 |
+
etils==0.9.0
|
145 |
+
exceptiongroup==1.1.0
|
146 |
+
explainable-ai-sdk==1.3.3
|
147 |
+
explainers @ https://storage.googleapis.com/explainability_sdk_wheel/explainers-1-cp37-cp37m-linux_x86_64.whl
|
148 |
+
fastai==2.7.11
|
149 |
+
fastapi==0.89.1
|
150 |
+
fastavro==1.7.0
|
151 |
+
fastcore==1.5.28
|
152 |
+
fastdownload==0.0.7
|
153 |
+
fasteners==0.18
|
154 |
+
fastjsonschema @ file:///home/conda/feedstock_root/build_artifacts/python-fastjsonschema_1663619548554/work/dist
|
155 |
+
fastprogress==1.0.3
|
156 |
+
fasttext==0.9.2
|
157 |
+
fbpca==1.0
|
158 |
+
feather-format==0.4.1
|
159 |
+
featuretools==1.11.1
|
160 |
+
filelock==3.9.0
|
161 |
+
Fiona==1.8.22
|
162 |
+
fitter==1.5.2
|
163 |
+
flake8==5.0.4
|
164 |
+
flashtext==2.7
|
165 |
+
Flask==2.2.3
|
166 |
+
flatbuffers==23.1.21
|
167 |
+
flax==0.6.4
|
168 |
+
flit_core @ file:///home/conda/feedstock_root/build_artifacts/flit-core_1667734568827/work/source/flit_core
|
169 |
+
folium==0.14.0
|
170 |
+
fonttools @ file:///home/conda/feedstock_root/build_artifacts/fonttools_1666389892786/work
|
171 |
+
frozendict==2.3.5
|
172 |
+
frozenlist==1.3.3
|
173 |
+
fsspec==2023.1.0
|
174 |
+
funcy==1.18
|
175 |
+
fury==0.8.0
|
176 |
+
future==0.18.3
|
177 |
+
fuzzywuzzy==0.18.0
|
178 |
+
gast==0.4.0
|
179 |
+
gatspy==0.3
|
180 |
+
gcsfs==2023.1.0
|
181 |
+
gensim==4.0.1
|
182 |
+
geographiclib==2.0
|
183 |
+
Geohash==1.0
|
184 |
+
geojson==3.0.1
|
185 |
+
geopandas==0.10.2
|
186 |
+
geoplot==0.5.1
|
187 |
+
geopy==2.3.0
|
188 |
+
geoviews==1.9.6
|
189 |
+
ggplot @ https://github.com/hbasria/ggpy/archive/0.11.5.zip
|
190 |
+
giddy==2.3.3
|
191 |
+
gitdb==4.0.10
|
192 |
+
GitPython==3.1.30
|
193 |
+
gluoncv==0.10.5.post0
|
194 |
+
gluonnlp==0.10.0
|
195 |
+
google-api-core==1.34.0
|
196 |
+
google-api-python-client==2.79.0
|
197 |
+
google-apitools==0.5.31
|
198 |
+
google-auth==1.35.0
|
199 |
+
google-auth-httplib2==0.1.0
|
200 |
+
google-auth-oauthlib==0.4.6
|
201 |
+
google-cloud-aiplatform @ git+https://github.com/googleapis/python-aiplatform.git@4ed7a50fef58d694ddb29d4240965d44e383da2b
|
202 |
+
google-cloud-automl==1.0.1
|
203 |
+
google-cloud-bigquery==2.2.0
|
204 |
+
google-cloud-bigtable==1.7.3
|
205 |
+
google-cloud-core==1.7.3
|
206 |
+
google-cloud-datastore==1.15.5
|
207 |
+
google-cloud-dlp==3.11.1
|
208 |
+
google-cloud-language==2.6.1
|
209 |
+
google-cloud-monitoring==2.14.1
|
210 |
+
google-cloud-pubsub==2.14.0
|
211 |
+
google-cloud-pubsublite==1.6.0
|
212 |
+
google-cloud-recommendations-ai==0.7.1
|
213 |
+
google-cloud-resource-manager==1.8.1
|
214 |
+
google-cloud-spanner==3.27.0
|
215 |
+
google-cloud-storage==1.44.0
|
216 |
+
google-cloud-translate==3.8.4
|
217 |
+
google-cloud-videointelligence==2.8.3
|
218 |
+
google-cloud-vision==2.8.0
|
219 |
+
google-crc32c==1.5.0
|
220 |
+
google-pasta==0.2.0
|
221 |
+
google-resumable-media==1.3.3
|
222 |
+
googleapis-common-protos==1.58.0
|
223 |
+
gplearn==0.4.2
|
224 |
+
gpustat==1.0.0
|
225 |
+
gpxpy==1.5.0
|
226 |
+
graphviz==0.8.4
|
227 |
+
greenlet==2.0.1
|
228 |
+
grpc-google-iam-v1==0.12.6
|
229 |
+
grpcio==1.51.1
|
230 |
+
grpcio-status==1.48.2
|
231 |
+
gviz-api==1.10.0
|
232 |
+
gym==0.23.1
|
233 |
+
gym-notices==0.0.8
|
234 |
+
h11==0.14.0
|
235 |
+
h2o==3.40.0.1
|
236 |
+
h5py==3.8.0
|
237 |
+
haversine==2.7.0
|
238 |
+
hdfs==2.7.0
|
239 |
+
HeapDict==1.0.1
|
240 |
+
hep-ml==0.7.1
|
241 |
+
hijri-converter==2.2.4
|
242 |
+
hmmlearn==0.2.8
|
243 |
+
holidays==0.19
|
244 |
+
holoviews==1.15.4
|
245 |
+
hpsklearn==0.1.0
|
246 |
+
html5lib==1.1
|
247 |
+
htmlmin==0.1.12
|
248 |
+
httplib2==0.20.4
|
249 |
+
httptools==0.5.0
|
250 |
+
huggingface-hub==0.12.1
|
251 |
+
humanize==4.6.0
|
252 |
+
hunspell==0.5.5
|
253 |
+
husl==4.0.3
|
254 |
+
hydra-slayer==0.4.0
|
255 |
+
hyperopt==0.2.7
|
256 |
+
hypertools==0.8.0
|
257 |
+
ibis-framework==2.1.1
|
258 |
+
idna @ file:///home/conda/feedstock_root/build_artifacts/idna_1663625384323/work
|
259 |
+
igraph==0.10.4
|
260 |
+
imagecodecs==2021.11.20
|
261 |
+
ImageHash==4.3.1
|
262 |
+
imageio==2.25.0
|
263 |
+
imbalanced-learn==0.10.1
|
264 |
+
imgaug==0.4.0
|
265 |
+
implicit @ file:///home/conda/feedstock_root/build_artifacts/implicit_1643471602441/work
|
266 |
+
importlib-metadata @ file:///home/conda/feedstock_root/build_artifacts/importlib-metadata_1653252814274/work
|
267 |
+
importlib-resources @ file:///home/conda/feedstock_root/build_artifacts/importlib_resources_1672681417544/work
|
268 |
+
inequality==1.0.0
|
269 |
+
iniconfig==2.0.0
|
270 |
+
ipydatawidgets==4.3.3
|
271 |
+
ipykernel @ file:///home/conda/feedstock_root/build_artifacts/ipykernel_1666723258080/work
|
272 |
+
ipyleaflet==0.17.2
|
273 |
+
ipympl==0.7.0
|
274 |
+
ipython==7.34.0
|
275 |
+
ipython-genutils==0.2.0
|
276 |
+
ipython-sql==0.4.1
|
277 |
+
ipyvolume==0.6.0
|
278 |
+
ipyvue==1.8.0
|
279 |
+
ipyvuetify==1.8.4
|
280 |
+
ipywebrtc==0.6.0
|
281 |
+
ipywidgets==7.7.1
|
282 |
+
isort==5.11.5
|
283 |
+
isoweek==1.3.3
|
284 |
+
itsdangerous==2.1.2
|
285 |
+
Janome==0.4.2
|
286 |
+
jax==0.3.25
|
287 |
+
jaxlib==0.3.25
|
288 |
+
jedi @ file:///home/conda/feedstock_root/build_artifacts/jedi_1669134318875/work
|
289 |
+
jieba==0.42.1
|
290 |
+
Jinja2 @ file:///home/conda/feedstock_root/build_artifacts/jinja2_1654302431367/work
|
291 |
+
jmespath==1.0.1
|
292 |
+
joblib==1.2.0
|
293 |
+
json5==0.9.11
|
294 |
+
jsonlines==1.2.0
|
295 |
+
jsonschema @ file:///home/conda/feedstock_root/build_artifacts/jsonschema-meta_1669810440410/work
|
296 |
+
jupyter-console==6.6.1
|
297 |
+
jupyter-http-over-ws==0.0.8
|
298 |
+
jupyter-lsp==1.5.1
|
299 |
+
jupyter-server==1.23.5
|
300 |
+
jupyter-server-mathjax==0.2.6
|
301 |
+
jupyter-server-proxy==3.2.2
|
302 |
+
jupyter_client @ file:///home/conda/feedstock_root/build_artifacts/jupyter_client_1673615989977/work
|
303 |
+
jupyter_core==4.12.0
|
304 |
+
jupyterlab==3.4.8
|
305 |
+
jupyterlab-git==0.41.0
|
306 |
+
jupyterlab-lsp==3.10.2
|
307 |
+
jupyterlab-pygments @ file:///home/conda/feedstock_root/build_artifacts/jupyterlab_pygments_1649936611996/work
|
308 |
+
jupyterlab-widgets==3.0.5
|
309 |
+
jupyterlab_server==2.15.2
|
310 |
+
jupytext==1.14.4
|
311 |
+
kaggle==1.5.12
|
312 |
+
kaggle-environments==1.12.0
|
313 |
+
keras==2.11.0
|
314 |
+
keras-tuner==1.1.3
|
315 |
+
kiwisolver @ file:///home/conda/feedstock_root/build_artifacts/kiwisolver_1657953088445/work
|
316 |
+
kmapper==2.0.1
|
317 |
+
kmodes==0.12.2
|
318 |
+
korean-lunar-calendar==0.3.1
|
319 |
+
kornia==0.5.8
|
320 |
+
kt-legacy==1.0.4
|
321 |
+
kubernetes==25.3.0
|
322 |
+
langcodes==3.3.0
|
323 |
+
langid==1.1.6
|
324 |
+
lazy-object-proxy==1.9.0
|
325 |
+
lazy_loader==0.1
|
326 |
+
learntools @ git+https://github.com/Kaggle/learntools@dd9a7f6495abbba9c7987c16365c8785fb646125
|
327 |
+
leven==1.0.4
|
328 |
+
Levenshtein==0.20.9
|
329 |
+
libclang==15.0.6.1
|
330 |
+
libmambapy @ file:///home/conda/feedstock_root/build_artifacts/mamba-split_1664905016189/work/libmambapy
|
331 |
+
libpysal==4.7.0
|
332 |
+
librosa==0.10.0
|
333 |
+
lightfm==1.16
|
334 |
+
lightgbm==3.3.2
|
335 |
+
lightning-utilities==0.7.1
|
336 |
+
lime==0.2.0.1
|
337 |
+
line-profiler==4.0.2
|
338 |
+
llvmlite==0.39.1
|
339 |
+
lml==0.1.0
|
340 |
+
locket==1.0.0
|
341 |
+
LunarCalendar==0.0.9
|
342 |
+
lxml==4.9.2
|
343 |
+
lz4==4.3.2
|
344 |
+
Mako==1.2.4
|
345 |
+
mamba @ file:///home/conda/feedstock_root/build_artifacts/mamba-split_1664905016189/work/mamba
|
346 |
+
mapclassify==2.5.0
|
347 |
+
marisa-trie==0.7.8
|
348 |
+
Markdown==3.4.1
|
349 |
+
markdown-it-py==2.1.0
|
350 |
+
markovify==0.9.4
|
351 |
+
MarkupSafe @ file:///home/conda/feedstock_root/build_artifacts/markupsafe_1648737551960/work
|
352 |
+
matplotlib @ file:///home/conda/feedstock_root/build_artifacts/matplotlib-suite_1661439848456/work
|
353 |
+
matplotlib-inline @ file:///home/conda/feedstock_root/build_artifacts/matplotlib-inline_1660814786464/work
|
354 |
+
matplotlib-venn==0.11.7
|
355 |
+
matrixprofile @ git+https://github.com/matrix-profile-foundation/matrixprofile.git@6bea7d4445284dbd9700a097974ef6d4613fbca7
|
356 |
+
mccabe==0.7.0
|
357 |
+
mdit-py-plugins==0.3.3
|
358 |
+
mdurl==0.1.2
|
359 |
+
memory-profiler==0.61.0
|
360 |
+
mercantile==1.2.1
|
361 |
+
mgwr==2.1.2
|
362 |
+
missingno==0.5.1
|
363 |
+
mistune @ file:///home/conda/feedstock_root/build_artifacts/mistune_1657892024508/work
|
364 |
+
mizani==0.7.3
|
365 |
+
mlcrate==0.2.0
|
366 |
+
mlens==0.2.3
|
367 |
+
mlxtend==0.21.0
|
368 |
+
mmh3==3.0.0
|
369 |
+
mne==1.3.0
|
370 |
+
mnist==0.2.2
|
371 |
+
mock==5.0.1
|
372 |
+
momepy==0.5.4
|
373 |
+
mpld3==0.5.9
|
374 |
+
mpmath==1.2.1
|
375 |
+
msgpack==1.0.4
|
376 |
+
msgpack-numpy==0.4.8
|
377 |
+
multidict==6.0.4
|
378 |
+
multimethod==1.9.1
|
379 |
+
multipledispatch==0.6.0
|
380 |
+
multiprocess==0.70.14
|
381 |
+
munch==2.5.0
|
382 |
+
munkres==1.1.4
|
383 |
+
murmurhash==1.0.9
|
384 |
+
mxnet==1.9.1
|
385 |
+
nb-conda @ file:///home/conda/feedstock_root/build_artifacts/nb_conda_1654442778977/work
|
386 |
+
nb-conda-kernels @ file:///home/conda/feedstock_root/build_artifacts/nb_conda_kernels_1636999991206/work
|
387 |
+
nbclassic @ file:///home/conda/feedstock_root/build_artifacts/nbclassic_1667492839781/work
|
388 |
+
nbclient==0.7.2
|
389 |
+
nbconvert @ file:///home/conda/feedstock_root/build_artifacts/nbconvert-meta_1673893169158/work
|
390 |
+
nbdime==3.1.1
|
391 |
+
nbformat @ file:///home/conda/feedstock_root/build_artifacts/nbformat_1673560067442/work
|
392 |
+
nest-asyncio @ file:///home/conda/feedstock_root/build_artifacts/nest-asyncio_1664684991461/work
|
393 |
+
netCDF4==1.6.2
|
394 |
+
networkx==2.6.3
|
395 |
+
nibabel==4.0.2
|
396 |
+
nilearn==0.10.0
|
397 |
+
ninja==1.11.1
|
398 |
+
nltk==3.2.4
|
399 |
+
nose==1.3.7
|
400 |
+
notebook @ file:///home/conda/feedstock_root/build_artifacts/notebook_1667565639349/work
|
401 |
+
notebook-executor @ file:///home/kbuilder/miniconda3/conda-bld/dlenv-tf-2-11-cpu_1674530713176/work/packages/notebook_executor
|
402 |
+
notebook_shim @ file:///home/conda/feedstock_root/build_artifacts/notebook-shim_1667478401171/work
|
403 |
+
numba==0.56.4
|
404 |
+
numexpr==2.8.4
|
405 |
+
numpy @ file:///home/conda/feedstock_root/build_artifacts/numpy_1649806299270/work
|
406 |
+
nvidia-ml-py==11.495.46
|
407 |
+
oauth2client==4.1.3
|
408 |
+
oauthlib==3.2.2
|
409 |
+
objsize==0.6.1
|
410 |
+
odfpy==1.4.1
|
411 |
+
olefile==0.46
|
412 |
+
onnx==1.13.1
|
413 |
+
opencensus==0.11.1
|
414 |
+
opencensus-context==0.1.3
|
415 |
+
opencv-contrib-python==4.5.4.60
|
416 |
+
opencv-python==4.5.4.60
|
417 |
+
opencv-python-headless==4.5.4.60
|
418 |
+
openpyxl==3.1.1
|
419 |
+
openslide-python==1.2.0
|
420 |
+
opentelemetry-api==1.1.0
|
421 |
+
opentelemetry-exporter-otlp==1.1.0
|
422 |
+
opentelemetry-exporter-otlp-proto-grpc==1.1.0
|
423 |
+
opentelemetry-proto==1.1.0
|
424 |
+
opentelemetry-sdk==1.1.0
|
425 |
+
opentelemetry-semantic-conventions==0.20b0
|
426 |
+
opt-einsum==3.3.0
|
427 |
+
optax==0.1.4
|
428 |
+
optuna==3.1.0
|
429 |
+
orbax==0.1.0
|
430 |
+
orderedmultidict==1.0.1
|
431 |
+
orjson==3.8.5
|
432 |
+
ortools==9.4.1874
|
433 |
+
osmnx==1.1.1
|
434 |
+
overrides==6.5.0
|
435 |
+
packaging @ file:///home/conda/feedstock_root/build_artifacts/packaging_1673482170163/work
|
436 |
+
palettable==3.3.0
|
437 |
+
pandarallel==1.6.4
|
438 |
+
pandas==1.3.5
|
439 |
+
pandas-datareader==0.10.0
|
440 |
+
pandas-profiling==3.6.2
|
441 |
+
pandas-summary==0.2.0
|
442 |
+
pandasql==0.7.3
|
443 |
+
pandocfilters @ file:///home/conda/feedstock_root/build_artifacts/pandocfilters_1631603243851/work
|
444 |
+
panel==0.14.3
|
445 |
+
papermill==2.4.0
|
446 |
+
param==1.12.3
|
447 |
+
parso @ file:///home/conda/feedstock_root/build_artifacts/parso_1638334955874/work
|
448 |
+
parsy==1.4.0
|
449 |
+
partd==1.3.0
|
450 |
+
path==16.6.0
|
451 |
+
path.py==12.5.0
|
452 |
+
pathos==0.3.0
|
453 |
+
pathtools==0.1.2
|
454 |
+
pathy==0.10.1
|
455 |
+
patsy==0.5.3
|
456 |
+
pdf2image==1.16.2
|
457 |
+
pexpect @ file:///home/conda/feedstock_root/build_artifacts/pexpect_1667297516076/work
|
458 |
+
phik==0.12.3
|
459 |
+
pickleshare @ file:///home/conda/feedstock_root/build_artifacts/pickleshare_1602536217715/work
|
460 |
+
Pillow==9.4.0
|
461 |
+
pkgutil_resolve_name @ file:///home/conda/feedstock_root/build_artifacts/pkgutil-resolve-name_1633981968097/work
|
462 |
+
platformdirs==2.6.2
|
463 |
+
plotly==5.13.0
|
464 |
+
plotly-express==0.4.1
|
465 |
+
plotnine==0.8.0
|
466 |
+
pluggy==1.0.0
|
467 |
+
pointpats==2.2.0
|
468 |
+
polars==0.16.8
|
469 |
+
polyglot==16.7.4
|
470 |
+
pooch==1.6.0
|
471 |
+
portalocker==2.7.0
|
472 |
+
pox==0.3.2
|
473 |
+
ppca==0.0.4
|
474 |
+
ppft==1.7.6.6
|
475 |
+
preprocessing==0.1.13
|
476 |
+
preshed==3.0.8
|
477 |
+
prettytable==0.7.2
|
478 |
+
progressbar2==4.2.0
|
479 |
+
prometheus-client @ file:///home/conda/feedstock_root/build_artifacts/prometheus_client_1665692535292/work
|
480 |
+
promise==2.3
|
481 |
+
prompt-toolkit @ file:///home/conda/feedstock_root/build_artifacts/prompt-toolkit_1670414775770/work
|
482 |
+
pronouncing==0.2.0
|
483 |
+
prophet==1.1.1
|
484 |
+
proto-plus==1.22.2
|
485 |
+
protobuf==3.20.3
|
486 |
+
psutil @ file:///home/conda/feedstock_root/build_artifacts/psutil_1666155398032/work
|
487 |
+
ptyprocess @ file:///home/conda/feedstock_root/build_artifacts/ptyprocess_1609419310487/work/dist/ptyprocess-0.7.0-py2.py3-none-any.whl
|
488 |
+
pudb==2022.1.3
|
489 |
+
PuLP==2.7.0
|
490 |
+
py-lz4framed==0.14.0
|
491 |
+
py-spy==0.3.14
|
492 |
+
py-stringmatching==0.4.2
|
493 |
+
py-stringsimjoin==0.3.2
|
494 |
+
py4j==0.10.9.7
|
495 |
+
pyaml==21.10.1
|
496 |
+
PyArabic==0.6.15
|
497 |
+
pyarrow==6.0.1
|
498 |
+
pyasn1==0.4.8
|
499 |
+
pyasn1-modules==0.2.8
|
500 |
+
PyAstronomy==0.18.1
|
501 |
+
pybind11==2.10.3
|
502 |
+
pyclipper==1.3.0.post4
|
503 |
+
pycodestyle==2.9.1
|
504 |
+
pycolmap==0.3.0
|
505 |
+
pycosat @ file:///home/conda/feedstock_root/build_artifacts/pycosat_1666656960991/work
|
506 |
+
pycparser @ file:///tmp/build/80754af9/pycparser_1636541352034/work
|
507 |
+
pycryptodome==3.17
|
508 |
+
pyct==0.5.0
|
509 |
+
pydantic==1.10.4
|
510 |
+
pydegensac==0.1.2
|
511 |
+
pydicom==2.3.1
|
512 |
+
pydocstyle==6.2.3
|
513 |
+
pydot==1.4.2
|
514 |
+
pydub==0.25.1
|
515 |
+
pyemd==0.5.1
|
516 |
+
pyerfa==2.0.0.1
|
517 |
+
pyexcel-io==0.6.6
|
518 |
+
pyexcel-ods==0.6.0
|
519 |
+
pyfasttext==0.4.6
|
520 |
+
pyflakes==2.5.0
|
521 |
+
pygeos==0.14
|
522 |
+
Pygments @ file:///home/conda/feedstock_root/build_artifacts/pygments_1672682006896/work
|
523 |
+
PyJWT==2.6.0
|
524 |
+
pykalman==0.9.5
|
525 |
+
pyLDAvis==3.2.2
|
526 |
+
pylint==2.16.2
|
527 |
+
pymc3==3.11.5
|
528 |
+
PyMeeus==0.5.12
|
529 |
+
pymongo==3.13.0
|
530 |
+
Pympler==1.0.1
|
531 |
+
pynndescent==0.5.8
|
532 |
+
pyocr==0.8.3
|
533 |
+
pyOpenSSL @ file:///home/conda/feedstock_root/build_artifacts/pyopenssl_1672659226110/work
|
534 |
+
pyparsing @ file:///home/conda/feedstock_root/build_artifacts/pyparsing_1652235407899/work
|
535 |
+
pypdf==3.4.1
|
536 |
+
PyPrind==2.11.3
|
537 |
+
pyproj @ file:///home/conda/feedstock_root/build_artifacts/pyproj_1623801868210/work
|
538 |
+
pyrsistent==0.19.3
|
539 |
+
pysal==2.6.0
|
540 |
+
pyshp @ file:///home/conda/feedstock_root/build_artifacts/pyshp_1659002966020/work
|
541 |
+
PySocks @ file:///tmp/build/80754af9/pysocks_1594394576006/work
|
542 |
+
pytesseract==0.3.10
|
543 |
+
pytest==7.2.1
|
544 |
+
python-bidi==0.4.2
|
545 |
+
python-dateutil @ file:///home/conda/feedstock_root/build_artifacts/python-dateutil_1626286286081/work
|
546 |
+
python-dotenv==0.21.1
|
547 |
+
python-igraph==0.10.4
|
548 |
+
python-Levenshtein==0.20.9
|
549 |
+
python-louvain==0.16
|
550 |
+
python-lsp-jsonrpc==1.0.0
|
551 |
+
python-lsp-server==1.7.1
|
552 |
+
python-slugify==8.0.0
|
553 |
+
python-utils==3.5.2
|
554 |
+
pythreejs==2.4.2
|
555 |
+
pytoolconfig==1.2.5
|
556 |
+
pytorch-ignite==0.4.11
|
557 |
+
pytorch-lightning==1.9.3
|
558 |
+
pytz==2022.7.1
|
559 |
+
pytz-deprecation-shim==0.1.0.post0
|
560 |
+
pyu2f @ file:///home/conda/feedstock_root/build_artifacts/pyu2f_1604248910016/work
|
561 |
+
PyUpSet==0.1.1.post7
|
562 |
+
pyviz-comms==2.2.1
|
563 |
+
PyWavelets==1.3.0
|
564 |
+
PyYAML==6.0
|
565 |
+
pyzmq==25.0.0
|
566 |
+
qgrid==1.3.1
|
567 |
+
qtconsole==5.4.0
|
568 |
+
QtPy==2.3.0
|
569 |
+
quantecon==0.6.0
|
570 |
+
quantities==0.13.0
|
571 |
+
qudida==0.0.4
|
572 |
+
quilt3==5.1.1
|
573 |
+
randomgen==1.23.1
|
574 |
+
rapidfuzz==2.13.7
|
575 |
+
rasterio==1.2.10
|
576 |
+
rasterstats==0.18.0
|
577 |
+
ray==2.2.0
|
578 |
+
ray-cpp==2.2.0
|
579 |
+
regex==2021.11.10
|
580 |
+
requests @ file:///home/conda/feedstock_root/build_artifacts/requests_1673863902341/work
|
581 |
+
requests-futures==1.0.0
|
582 |
+
requests-oauthlib==1.3.1
|
583 |
+
responses==0.18.0
|
584 |
+
retrying==1.3.4
|
585 |
+
rgf-python==3.12.0
|
586 |
+
rich==13.2.0
|
587 |
+
rope==1.7.0
|
588 |
+
rsa @ file:///home/conda/feedstock_root/build_artifacts/rsa_1658328885051/work
|
589 |
+
Rtree==1.0.1
|
590 |
+
ruamel-yaml-conda @ file:///tmp/build/80754af9/ruamel_yaml_1616016701961/work
|
591 |
+
rvlib==0.0.6
|
592 |
+
s2sphere==0.2.5
|
593 |
+
s3fs==2023.1.0
|
594 |
+
s3transfer==0.6.0
|
595 |
+
scattertext==0.1.12
|
596 |
+
scikit-image==0.19.3
|
597 |
+
scikit-learn==1.0.2
|
598 |
+
scikit-learn-intelex==2021.6.3
|
599 |
+
scikit-multilearn==0.2.0
|
600 |
+
scikit-optimize==0.9.0
|
601 |
+
scikit-plot==0.3.7
|
602 |
+
scikit-surprise==1.1.1
|
603 |
+
scipy @ file:///home/conda/feedstock_root/build_artifacts/scipy_1637806658031/work
|
604 |
+
seaborn==0.12.2
|
605 |
+
segregation==2.3.1
|
606 |
+
semver==2.13.0
|
607 |
+
Send2Trash @ file:///home/conda/feedstock_root/build_artifacts/send2trash_1628511208346/work
|
608 |
+
sentencepiece==0.1.97
|
609 |
+
sentry-sdk==1.15.0
|
610 |
+
setproctitle==1.3.2
|
611 |
+
setuptools-git==1.2
|
612 |
+
shap==0.41.0
|
613 |
+
Shapely @ file:///home/conda/feedstock_root/build_artifacts/shapely_1635194349843/work
|
614 |
+
simpervisor==0.4
|
615 |
+
SimpleITK==2.2.1
|
616 |
+
simplejson==3.18.3
|
617 |
+
six @ file:///tmp/build/80754af9/six_1644875935023/work
|
618 |
+
sklearn-contrib-py-earth @ git+https://github.com/scikit-learn-contrib/py-earth.git@dde5f899255411a7b9cbbabf93a817eff4b02e5e
|
619 |
+
sklearn-pandas==2.2.0
|
620 |
+
slicer==0.0.7
|
621 |
+
smart-open==6.3.0
|
622 |
+
smhasher==0.150.1
|
623 |
+
smmap==5.0.0
|
624 |
+
sniffio @ file:///home/conda/feedstock_root/build_artifacts/sniffio_1662051266223/work
|
625 |
+
snowballstemmer==2.2.0
|
626 |
+
snuggs==1.4.7
|
627 |
+
sortedcontainers==2.4.0
|
628 |
+
soundfile==0.11.0
|
629 |
+
soupsieve @ file:///home/conda/feedstock_root/build_artifacts/soupsieve_1658207591808/work
|
630 |
+
soxr==0.3.3
|
631 |
+
spacy==3.5.0
|
632 |
+
spacy-legacy==3.0.12
|
633 |
+
spacy-loggers==1.0.4
|
634 |
+
spaghetti==1.6.5
|
635 |
+
spectral==0.23.1
|
636 |
+
spglm==1.0.8
|
637 |
+
sphinx-rtd-theme==0.2.4
|
638 |
+
spint==1.0.7
|
639 |
+
splot==1.1.5.post1
|
640 |
+
spopt==0.4.1
|
641 |
+
spreg==1.3.0
|
642 |
+
spvcm==0.3.0
|
643 |
+
SQLAlchemy==1.4.46
|
644 |
+
sqlparse==0.4.3
|
645 |
+
squarify==0.4.3
|
646 |
+
srsly==2.4.5
|
647 |
+
starlette==0.22.0
|
648 |
+
statsmodels==0.13.5
|
649 |
+
stemming==1.0.1
|
650 |
+
stop-words==2018.7.23
|
651 |
+
stopit==1.1.2
|
652 |
+
stumpy==1.11.1
|
653 |
+
sympy==1.10.1
|
654 |
+
tables==3.7.0
|
655 |
+
tabulate==0.9.0
|
656 |
+
tangled-up-in-unicode==0.2.0
|
657 |
+
tbb==2021.8.0
|
658 |
+
tblib==1.7.0
|
659 |
+
tenacity==8.1.0
|
660 |
+
tensorboard==2.11.2
|
661 |
+
tensorboard-data-server==0.6.1
|
662 |
+
tensorboard-plugin-profile==2.11.1
|
663 |
+
tensorboard-plugin-wit==1.8.1
|
664 |
+
tensorboardX==2.5.1
|
665 |
+
tensorflow==2.11.0
|
666 |
+
tensorflow-addons==0.19.0
|
667 |
+
tensorflow-cloud==0.1.16
|
668 |
+
tensorflow-datasets==4.8.2
|
669 |
+
tensorflow-decision-forests==1.2.0
|
670 |
+
tensorflow-estimator==2.11.0
|
671 |
+
tensorflow-gcs-config==2.11.0
|
672 |
+
tensorflow-hub==0.12.0
|
673 |
+
tensorflow-io==0.29.0
|
674 |
+
tensorflow-io-gcs-filesystem==0.29.0
|
675 |
+
tensorflow-metadata==1.12.0
|
676 |
+
tensorflow-probability==0.19.0
|
677 |
+
tensorflow-serving-api==2.11.0
|
678 |
+
tensorflow-text==2.11.0
|
679 |
+
tensorflow-transform==1.12.0
|
680 |
+
tensorpack==0.11
|
681 |
+
tensorstore==0.1.28
|
682 |
+
termcolor==2.2.0
|
683 |
+
terminado @ file:///home/conda/feedstock_root/build_artifacts/terminado_1670253674810/work
|
684 |
+
text-unidecode==1.3
|
685 |
+
textblob==0.17.1
|
686 |
+
texttable==1.6.7
|
687 |
+
textwrap3==0.9.2
|
688 |
+
tflite-runtime==2.11.0
|
689 |
+
tfx-bsl==1.12.0
|
690 |
+
Theano==1.0.5
|
691 |
+
Theano-PyMC==1.1.2
|
692 |
+
thinc==8.1.7
|
693 |
+
threadpoolctl==3.1.0
|
694 |
+
tifffile==2021.11.2
|
695 |
+
timm==0.6.12
|
696 |
+
tinycss2 @ file:///home/conda/feedstock_root/build_artifacts/tinycss2_1666100256010/work
|
697 |
+
tobler==0.9.0
|
698 |
+
tokenizers==0.13.2
|
699 |
+
toml==0.10.2
|
700 |
+
tomli==2.0.1
|
701 |
+
tomlkit==0.11.6
|
702 |
+
toolz==0.11.2
|
703 |
+
torch==1.13.0+cpu
|
704 |
+
torchaudio==0.13.0+cpu
|
705 |
+
torchinfo==1.7.2
|
706 |
+
torchmetrics==0.11.1
|
707 |
+
torchtext==0.14.0
|
708 |
+
torchvision==0.14.0+cpu
|
709 |
+
tornado @ file:///home/conda/feedstock_root/build_artifacts/tornado_1656937818679/work
|
710 |
+
TPOT==0.11.7
|
711 |
+
tqdm==4.64.1
|
712 |
+
traceml==1.0.8
|
713 |
+
traitlets @ file:///home/conda/feedstock_root/build_artifacts/traitlets_1673359992537/work
|
714 |
+
traittypes==0.2.1
|
715 |
+
transformers==4.26.1
|
716 |
+
trueskill==0.4.5
|
717 |
+
tsfresh==0.20.0
|
718 |
+
typed-ast==1.5.4
|
719 |
+
typeguard==2.13.3
|
720 |
+
typer==0.7.0
|
721 |
+
typing_extensions @ file:///home/conda/feedstock_root/build_artifacts/typing_extensions_1665144421445/work
|
722 |
+
tzdata==2022.7
|
723 |
+
tzlocal==4.2
|
724 |
+
ujson==5.7.0
|
725 |
+
umap-learn==0.5.3
|
726 |
+
unicodedata2 @ file:///home/conda/feedstock_root/build_artifacts/unicodedata2_1649111917568/work
|
727 |
+
Unidecode==1.3.6
|
728 |
+
update-checker==0.18.0
|
729 |
+
uritemplate==3.0.1
|
730 |
+
urllib3 @ file:///home/conda/feedstock_root/build_artifacts/urllib3_1673452138552/work
|
731 |
+
urwid==2.1.2
|
732 |
+
urwid-readline==0.13
|
733 |
+
uvicorn==0.20.0
|
734 |
+
uvloop==0.17.0
|
735 |
+
vaex==4.16.0
|
736 |
+
vaex-astro==0.9.3
|
737 |
+
vaex-core==4.16.1
|
738 |
+
vaex-hdf5==0.14.1
|
739 |
+
vaex-jupyter==0.8.1
|
740 |
+
vaex-ml==0.18.1
|
741 |
+
vaex-server==0.8.1
|
742 |
+
vaex-viz==0.5.4
|
743 |
+
vecstack==0.4.0
|
744 |
+
virtualenv==20.17.1
|
745 |
+
visions==0.7.5
|
746 |
+
vowpalwabbit==9.7.0
|
747 |
+
vtk==9.2.6
|
748 |
+
Wand==0.6.11
|
749 |
+
wandb==0.13.10
|
750 |
+
wasabi==1.1.1
|
751 |
+
watchfiles==0.18.1
|
752 |
+
wavio==0.0.7
|
753 |
+
wcwidth @ file:///home/conda/feedstock_root/build_artifacts/wcwidth_1673864653149/work
|
754 |
+
webencodings==0.5.1
|
755 |
+
websocket-client @ file:///home/conda/feedstock_root/build_artifacts/websocket-client_1667568040382/work
|
756 |
+
websockets==10.4
|
757 |
+
Werkzeug==2.2.3
|
758 |
+
wfdb==4.1.0
|
759 |
+
whatthepatch==1.0.4
|
760 |
+
widgetsnbextension==3.6.2
|
761 |
+
witwidget==1.8.1
|
762 |
+
woodwork==0.16.4
|
763 |
+
Wordbatch==1.4.9
|
764 |
+
wordcloud==1.8.2.2
|
765 |
+
wordsegment==1.3.1
|
766 |
+
wrapt==1.14.1
|
767 |
+
wurlitzer==3.0.3
|
768 |
+
xarray==0.20.2
|
769 |
+
xarray-einstats==0.2.2
|
770 |
+
xgboost==1.6.2
|
771 |
+
xvfbwrapper==0.2.9
|
772 |
+
xxhash==3.2.0
|
773 |
+
xyzservices==2023.2.0
|
774 |
+
yacs==0.1.8
|
775 |
+
yapf==0.32.0
|
776 |
+
yarl==1.8.2
|
777 |
+
yellowbrick==1.5
|
778 |
+
zict==2.2.0
|
779 |
+
zipp @ file:///home/conda/feedstock_root/build_artifacts/zipp_1669453021653/work
|
780 |
+
zstandard @ file:///home/conda/feedstock_root/build_artifacts/zstandard_1655887611100/work
|
sign_to_prediction_index_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"TV": 0, "after": 1, "airplane": 2, "all": 3, "alligator": 4, "animal": 5, "another": 6, "any": 7, "apple": 8, "arm": 9, "aunt": 10, "awake": 11, "backyard": 12, "bad": 13, "balloon": 14, "bath": 15, "because": 16, "bed": 17, "bedroom": 18, "bee": 19, "before": 20, "beside": 21, "better": 22, "bird": 23, "black": 24, "blow": 25, "blue": 26, "boat": 27, "book": 28, "boy": 29, "brother": 30, "brown": 31, "bug": 32, "bye": 33, "callonphone": 34, "can": 35, "car": 36, "carrot": 37, "cat": 38, "cereal": 39, "chair": 40, "cheek": 41, "child": 42, "chin": 43, "chocolate": 44, "clean": 45, "close": 46, "closet": 47, "cloud": 48, "clown": 49, "cow": 50, "cowboy": 51, "cry": 52, "cut": 53, "cute": 54, "dad": 55, "dance": 56, "dirty": 57, "dog": 58, "doll": 59, "donkey": 60, "down": 61, "drawer": 62, "drink": 63, "drop": 64, "dry": 65, "dryer": 66, "duck": 67, "ear": 68, "elephant": 69, "empty": 70, "every": 71, "eye": 72, "face": 73, "fall": 74, "farm": 75, "fast": 76, "feet": 77, "find": 78, "fine": 79, "finger": 80, "finish": 81, "fireman": 82, "first": 83, "fish": 84, "flag": 85, "flower": 86, "food": 87, "for": 88, "frenchfries": 89, "frog": 90, "garbage": 91, "gift": 92, "giraffe": 93, "girl": 94, "give": 95, "glasswindow": 96, "go": 97, "goose": 98, "grandma": 99, "grandpa": 100, "grass": 101, "green": 102, "gum": 103, "hair": 104, "happy": 105, "hat": 106, "hate": 107, "have": 108, "haveto": 109, "head": 110, "hear": 111, "helicopter": 112, "hello": 113, "hen": 114, "hesheit": 115, "hide": 116, "high": 117, "home": 118, "horse": 119, "hot": 120, "hungry": 121, "icecream": 122, "if": 123, "into": 124, "jacket": 125, "jeans": 126, "jump": 127, "kiss": 128, "kitty": 129, "lamp": 130, "later": 131, "like": 132, "lion": 133, "lips": 134, "listen": 135, "look": 136, "loud": 137, "mad": 138, "make": 139, "man": 140, "many": 141, "milk": 142, "minemy": 143, "mitten": 144, "mom": 145, "moon": 146, "morning": 147, "mouse": 148, "mouth": 149, "nap": 150, "napkin": 151, "night": 152, "no": 153, "noisy": 154, "nose": 155, "not": 156, "now": 157, "nuts": 158, "old": 159, "on": 160, "open": 161, "orange": 162, "outside": 163, "owie": 164, "owl": 165, "pajamas": 166, "pen": 167, "pencil": 168, "penny": 169, "person": 170, "pig": 171, "pizza": 172, "please": 173, "police": 174, "pool": 175, "potty": 176, "pretend": 177, "pretty": 178, "puppy": 179, "puzzle": 180, "quiet": 181, "radio": 182, "rain": 183, "read": 184, "red": 185, "refrigerator": 186, "ride": 187, "room": 188, "sad": 189, "same": 190, "say": 191, "scissors": 192, "see": 193, "shhh": 194, "shirt": 195, "shoe": 196, "shower": 197, "sick": 198, "sleep": 199, "sleepy": 200, "smile": 201, "snack": 202, "snow": 203, "stairs": 204, "stay": 205, "sticky": 206, "store": 207, "story": 208, "stuck": 209, "sun": 210, "table": 211, "talk": 212, "taste": 213, "thankyou": 214, "that": 215, "there": 216, "think": 217, "thirsty": 218, "tiger": 219, "time": 220, "tomorrow": 221, "tongue": 222, "tooth": 223, "toothbrush": 224, "touch": 225, "toy": 226, "tree": 227, "uncle": 228, "underwear": 229, "up": 230, "vacuum": 231, "wait": 232, "wake": 233, "water": 234, "wet": 235, "weus": 236, "where": 237, "white": 238, "who": 239, "why": 240, "will": 241, "wolf": 242, "yellow": 243, "yes": 244, "yesterday": 245, "yourself": 246, "yucky": 247, "zebra": 248, "zipper": 249}
|
utils.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
|
4 |
+
def load_relevant_data_subset(df, ROWS_PER_FRAME):
|
5 |
+
data_columns = ['x', 'y', 'z']
|
6 |
+
data = df
|
7 |
+
n_frames = int(len(data) / ROWS_PER_FRAME)
|
8 |
+
data = data.values.reshape(n_frames, ROWS_PER_FRAME, len(data_columns))
|
9 |
+
return data.astype(np.float32)
|
10 |
+
|
11 |
+
def display_dataframe():
|
12 |
+
return df
|