Spaces:
Running
Running
Upload 3 files
Browse files- lora_clm_accelerate_big_model_inference.ipynb +481 -0
- lora_clm_with_additional_tokens.ipynb +1012 -0
- prompt_tuning_clm.ipynb +1229 -0
lora_clm_accelerate_big_model_inference.ipynb
ADDED
@@ -0,0 +1,481 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "71fbfca2",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stdout",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"\n",
|
14 |
+
"===================================BUG REPORT===================================\n",
|
15 |
+
"Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues\n",
|
16 |
+
"For effortless bug reporting copy-paste your error into this form: https://docs.google.com/forms/d/e/1FAIpQLScPB8emS3Thkp66nvqwmjTEgxp8Y9ufuWTzFyr9kJ5AoI47dQ/viewform?usp=sf_link\n",
|
17 |
+
"================================================================================\n",
|
18 |
+
"CUDA SETUP: CUDA runtime path found: /home/sourab/miniconda3/envs/ml/lib/libcudart.so\n",
|
19 |
+
"CUDA SETUP: Highest compute capability among GPUs detected: 7.5\n",
|
20 |
+
"CUDA SETUP: Detected CUDA version 117\n",
|
21 |
+
"CUDA SETUP: Loading binary /home/sourab/miniconda3/envs/ml/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cuda117.so...\n"
|
22 |
+
]
|
23 |
+
}
|
24 |
+
],
|
25 |
+
"source": [
|
26 |
+
"from transformers import AutoModelForCausalLM\n",
|
27 |
+
"from peft import PeftModel, PeftConfig\n",
|
28 |
+
"import torch\n",
|
29 |
+
"from datasets import load_dataset\n",
|
30 |
+
"import os\n",
|
31 |
+
"from transformers import AutoTokenizer\n",
|
32 |
+
"from torch.utils.data import DataLoader\n",
|
33 |
+
"from transformers import default_data_collator, get_linear_schedule_with_warmup\n",
|
34 |
+
"from tqdm import tqdm\n",
|
35 |
+
"from datasets import load_dataset\n",
|
36 |
+
"\n",
|
37 |
+
"device = \"cuda\"\n",
|
38 |
+
"model_name_or_path = \"bigscience/bloomz-7b1\"\n",
|
39 |
+
"tokenizer_name_or_path = \"bigscience/bloomz-7b1\"\n",
|
40 |
+
"dataset_name = \"twitter_complaints\"\n",
|
41 |
+
"text_column = \"Tweet text\"\n",
|
42 |
+
"label_column = \"text_label\"\n",
|
43 |
+
"max_length = 64\n",
|
44 |
+
"lr = 1e-3\n",
|
45 |
+
"num_epochs = 50\n",
|
46 |
+
"batch_size = 8"
|
47 |
+
]
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"cell_type": "code",
|
51 |
+
"execution_count": null,
|
52 |
+
"id": "e1a3648b",
|
53 |
+
"metadata": {},
|
54 |
+
"outputs": [],
|
55 |
+
"source": [
|
56 |
+
"from datasets import load_dataset\n",
|
57 |
+
"\n",
|
58 |
+
"dataset = load_dataset(\"ought/raft\", dataset_name)\n",
|
59 |
+
"\n",
|
60 |
+
"classes = [k.replace(\"_\", \" \") for k in dataset[\"train\"].features[\"Label\"].names]\n",
|
61 |
+
"print(classes)\n",
|
62 |
+
"dataset = dataset.map(\n",
|
63 |
+
" lambda x: {\"text_label\": [classes[label] for label in x[\"Label\"]]},\n",
|
64 |
+
" batched=True,\n",
|
65 |
+
" num_proc=1,\n",
|
66 |
+
")\n",
|
67 |
+
"print(dataset)\n",
|
68 |
+
"dataset[\"train\"][0]"
|
69 |
+
]
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"cell_type": "code",
|
73 |
+
"execution_count": 3,
|
74 |
+
"id": "fe12d4d3",
|
75 |
+
"metadata": {},
|
76 |
+
"outputs": [
|
77 |
+
{
|
78 |
+
"name": "stdout",
|
79 |
+
"output_type": "stream",
|
80 |
+
"text": [
|
81 |
+
"3\n"
|
82 |
+
]
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"data": {
|
86 |
+
"application/vnd.jupyter.widget-view+json": {
|
87 |
+
"model_id": "10cabeec92ab428f9a660ebaecbaf865",
|
88 |
+
"version_major": 2,
|
89 |
+
"version_minor": 0
|
90 |
+
},
|
91 |
+
"text/plain": [
|
92 |
+
"Running tokenizer on dataset: 0%| | 0/1 [00:00<?, ?ba/s]"
|
93 |
+
]
|
94 |
+
},
|
95 |
+
"metadata": {},
|
96 |
+
"output_type": "display_data"
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"data": {
|
100 |
+
"application/vnd.jupyter.widget-view+json": {
|
101 |
+
"model_id": "8a344e989ab34c71b230acee68b477e8",
|
102 |
+
"version_major": 2,
|
103 |
+
"version_minor": 0
|
104 |
+
},
|
105 |
+
"text/plain": [
|
106 |
+
"Running tokenizer on dataset: 0%| | 0/4 [00:00<?, ?ba/s]"
|
107 |
+
]
|
108 |
+
},
|
109 |
+
"metadata": {},
|
110 |
+
"output_type": "display_data"
|
111 |
+
}
|
112 |
+
],
|
113 |
+
"source": [
|
114 |
+
"# data preprocessing\n",
|
115 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)\n",
|
116 |
+
"if tokenizer.pad_token_id is None:\n",
|
117 |
+
" tokenizer.pad_token_id = tokenizer.eos_token_id\n",
|
118 |
+
"target_max_length = max([len(tokenizer(class_label)[\"input_ids\"]) for class_label in classes])\n",
|
119 |
+
"print(target_max_length)\n",
|
120 |
+
"\n",
|
121 |
+
"\n",
|
122 |
+
"def preprocess_function(examples):\n",
|
123 |
+
" batch_size = len(examples[text_column])\n",
|
124 |
+
" inputs = [f\"{text_column} : {x} Label : \" for x in examples[text_column]]\n",
|
125 |
+
" targets = [str(x) for x in examples[label_column]]\n",
|
126 |
+
" model_inputs = tokenizer(inputs)\n",
|
127 |
+
" labels = tokenizer(targets, add_special_tokens=False) # don't add bos token because we concatenate with inputs\n",
|
128 |
+
" for i in range(batch_size):\n",
|
129 |
+
" sample_input_ids = model_inputs[\"input_ids\"][i]\n",
|
130 |
+
" label_input_ids = labels[\"input_ids\"][i] + [tokenizer.eos_token_id]\n",
|
131 |
+
" # print(i, sample_input_ids, label_input_ids)\n",
|
132 |
+
" model_inputs[\"input_ids\"][i] = sample_input_ids + label_input_ids\n",
|
133 |
+
" labels[\"input_ids\"][i] = [-100] * len(sample_input_ids) + label_input_ids\n",
|
134 |
+
" model_inputs[\"attention_mask\"][i] = [1] * len(model_inputs[\"input_ids\"][i])\n",
|
135 |
+
" # print(model_inputs)\n",
|
136 |
+
" for i in range(batch_size):\n",
|
137 |
+
" sample_input_ids = model_inputs[\"input_ids\"][i]\n",
|
138 |
+
" label_input_ids = labels[\"input_ids\"][i]\n",
|
139 |
+
" model_inputs[\"input_ids\"][i] = [tokenizer.pad_token_id] * (\n",
|
140 |
+
" max_length - len(sample_input_ids)\n",
|
141 |
+
" ) + sample_input_ids\n",
|
142 |
+
" model_inputs[\"attention_mask\"][i] = [0] * (max_length - len(sample_input_ids)) + model_inputs[\n",
|
143 |
+
" \"attention_mask\"\n",
|
144 |
+
" ][i]\n",
|
145 |
+
" labels[\"input_ids\"][i] = [-100] * (max_length - len(sample_input_ids)) + label_input_ids\n",
|
146 |
+
" model_inputs[\"input_ids\"][i] = torch.tensor(model_inputs[\"input_ids\"][i][:max_length])\n",
|
147 |
+
" model_inputs[\"attention_mask\"][i] = torch.tensor(model_inputs[\"attention_mask\"][i][:max_length])\n",
|
148 |
+
" labels[\"input_ids\"][i] = torch.tensor(labels[\"input_ids\"][i][:max_length])\n",
|
149 |
+
" model_inputs[\"labels\"] = labels[\"input_ids\"]\n",
|
150 |
+
" return model_inputs\n",
|
151 |
+
"\n",
|
152 |
+
"\n",
|
153 |
+
"processed_datasets = dataset.map(\n",
|
154 |
+
" preprocess_function,\n",
|
155 |
+
" batched=True,\n",
|
156 |
+
" num_proc=1,\n",
|
157 |
+
" remove_columns=dataset[\"train\"].column_names,\n",
|
158 |
+
" load_from_cache_file=False,\n",
|
159 |
+
" desc=\"Running tokenizer on dataset\",\n",
|
160 |
+
")\n",
|
161 |
+
"\n",
|
162 |
+
"train_dataset = processed_datasets[\"train\"]\n",
|
163 |
+
"\n",
|
164 |
+
"\n",
|
165 |
+
"train_dataloader = DataLoader(\n",
|
166 |
+
" train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True\n",
|
167 |
+
")"
|
168 |
+
]
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"cell_type": "code",
|
172 |
+
"execution_count": null,
|
173 |
+
"id": "2795b9d0",
|
174 |
+
"metadata": {},
|
175 |
+
"outputs": [],
|
176 |
+
"source": [
|
177 |
+
"def test_preprocess_function(examples):\n",
|
178 |
+
" batch_size = len(examples[text_column])\n",
|
179 |
+
" inputs = [f\"{text_column} : {x} Label : \" for x in examples[text_column]]\n",
|
180 |
+
" model_inputs = tokenizer(inputs)\n",
|
181 |
+
" # print(model_inputs)\n",
|
182 |
+
" for i in range(batch_size):\n",
|
183 |
+
" sample_input_ids = model_inputs[\"input_ids\"][i]\n",
|
184 |
+
" model_inputs[\"input_ids\"][i] = [tokenizer.pad_token_id] * (\n",
|
185 |
+
" max_length - len(sample_input_ids)\n",
|
186 |
+
" ) + sample_input_ids\n",
|
187 |
+
" model_inputs[\"attention_mask\"][i] = [0] * (max_length - len(sample_input_ids)) + model_inputs[\n",
|
188 |
+
" \"attention_mask\"\n",
|
189 |
+
" ][i]\n",
|
190 |
+
" model_inputs[\"input_ids\"][i] = torch.tensor(model_inputs[\"input_ids\"][i][:max_length])\n",
|
191 |
+
" model_inputs[\"attention_mask\"][i] = torch.tensor(model_inputs[\"attention_mask\"][i][:max_length])\n",
|
192 |
+
" return model_inputs\n",
|
193 |
+
"\n",
|
194 |
+
"\n",
|
195 |
+
"processed_datasets = dataset.map(\n",
|
196 |
+
" test_preprocess_function,\n",
|
197 |
+
" batched=True,\n",
|
198 |
+
" num_proc=1,\n",
|
199 |
+
" remove_columns=dataset[\"train\"].column_names,\n",
|
200 |
+
" load_from_cache_file=False,\n",
|
201 |
+
" desc=\"Running tokenizer on dataset\",\n",
|
202 |
+
")\n",
|
203 |
+
"\n",
|
204 |
+
"eval_dataset = processed_datasets[\"train\"]\n",
|
205 |
+
"test_dataset = processed_datasets[\"test\"]\n",
|
206 |
+
"\n",
|
207 |
+
"eval_dataloader = DataLoader(eval_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True)\n",
|
208 |
+
"test_dataloader = DataLoader(test_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True)\n",
|
209 |
+
"print(next(iter(eval_dataloader)))\n",
|
210 |
+
"print(next(iter(test_dataloader)))"
|
211 |
+
]
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"cell_type": "markdown",
|
215 |
+
"id": "42b14a11",
|
216 |
+
"metadata": {},
|
217 |
+
"source": [
|
218 |
+
"You can load model from hub or local\n",
|
219 |
+
"\n",
|
220 |
+
"- Load model from Hugging Face Hub, you can change to your own model id\n",
|
221 |
+
"```python\n",
|
222 |
+
"peft_model_id = \"username/twitter_complaints_bigscience_bloomz-7b1_LORA_CAUSAL_LM\"\n",
|
223 |
+
"```\n",
|
224 |
+
"- Or load model form local\n",
|
225 |
+
"```python\n",
|
226 |
+
"peft_model_id = \"twitter_complaints_bigscience_bloomz-7b1_LORA_CAUSAL_LM\"\n",
|
227 |
+
"```"
|
228 |
+
]
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"cell_type": "code",
|
232 |
+
"execution_count": 5,
|
233 |
+
"id": "9caac014",
|
234 |
+
"metadata": {},
|
235 |
+
"outputs": [
|
236 |
+
{
|
237 |
+
"name": "stderr",
|
238 |
+
"output_type": "stream",
|
239 |
+
"text": [
|
240 |
+
"/home/sourab/pet/src/peft/tuners/lora.py:143: UserWarning: fan_in_fan_out is set to True but the target module is not a Conv1D. Setting fan_in_fan_out to False.\n",
|
241 |
+
" warnings.warn(\n"
|
242 |
+
]
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"data": {
|
246 |
+
"application/vnd.jupyter.widget-view+json": {
|
247 |
+
"model_id": "bc38030106a14173a1363eb1ee388eda",
|
248 |
+
"version_major": 2,
|
249 |
+
"version_minor": 0
|
250 |
+
},
|
251 |
+
"text/plain": [
|
252 |
+
"Downloading: 0%| | 0.00/15.8M [00:00<?, ?B/s]"
|
253 |
+
]
|
254 |
+
},
|
255 |
+
"metadata": {},
|
256 |
+
"output_type": "display_data"
|
257 |
+
}
|
258 |
+
],
|
259 |
+
"source": [
|
260 |
+
"from peft import PeftModel, PeftConfig\n",
|
261 |
+
"\n",
|
262 |
+
"max_memory = {0: \"1GIB\", 1: \"1GIB\", 2: \"2GIB\", 3: \"10GIB\", \"cpu\": \"30GB\"}\n",
|
263 |
+
"peft_model_id = \"smangrul/twitter_complaints_bigscience_bloomz-7b1_LORA_CAUSAL_LM\"\n",
|
264 |
+
"config = PeftConfig.from_pretrained(peft_model_id)\n",
|
265 |
+
"model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, device_map=\"auto\", max_memory=max_memory)\n",
|
266 |
+
"model = PeftModel.from_pretrained(model, peft_model_id, device_map=\"auto\", max_memory=max_memory)"
|
267 |
+
]
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"cell_type": "code",
|
271 |
+
"execution_count": 35,
|
272 |
+
"id": "6fac10b5",
|
273 |
+
"metadata": {},
|
274 |
+
"outputs": [],
|
275 |
+
"source": [
|
276 |
+
"# model"
|
277 |
+
]
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"cell_type": "code",
|
281 |
+
"execution_count": 7,
|
282 |
+
"id": "2a08ee6d",
|
283 |
+
"metadata": {},
|
284 |
+
"outputs": [
|
285 |
+
{
|
286 |
+
"data": {
|
287 |
+
"text/plain": [
|
288 |
+
"{'base_model.model.transformer.word_embeddings': 3,\n",
|
289 |
+
" 'base_model.model.lm_head': 3,\n",
|
290 |
+
" 'base_model.model.transformer.word_embeddings_layernorm': 3,\n",
|
291 |
+
" 'base_model.model.transformer.h.0': 3,\n",
|
292 |
+
" 'base_model.model.transformer.h.1': 3,\n",
|
293 |
+
" 'base_model.model.transformer.h.2': 3,\n",
|
294 |
+
" 'base_model.model.transformer.h.3': 3,\n",
|
295 |
+
" 'base_model.model.transformer.h.4': 3,\n",
|
296 |
+
" 'base_model.model.transformer.h.5': 3,\n",
|
297 |
+
" 'base_model.model.transformer.h.6': 3,\n",
|
298 |
+
" 'base_model.model.transformer.h.7': 3,\n",
|
299 |
+
" 'base_model.model.transformer.h.8': 'cpu',\n",
|
300 |
+
" 'base_model.model.transformer.h.9': 'cpu',\n",
|
301 |
+
" 'base_model.model.transformer.h.10': 'cpu',\n",
|
302 |
+
" 'base_model.model.transformer.h.11': 'cpu',\n",
|
303 |
+
" 'base_model.model.transformer.h.12': 'cpu',\n",
|
304 |
+
" 'base_model.model.transformer.h.13': 'cpu',\n",
|
305 |
+
" 'base_model.model.transformer.h.14': 'cpu',\n",
|
306 |
+
" 'base_model.model.transformer.h.15': 'cpu',\n",
|
307 |
+
" 'base_model.model.transformer.h.16': 'cpu',\n",
|
308 |
+
" 'base_model.model.transformer.h.17': 'cpu',\n",
|
309 |
+
" 'base_model.model.transformer.h.18': 'cpu',\n",
|
310 |
+
" 'base_model.model.transformer.h.19': 'cpu',\n",
|
311 |
+
" 'base_model.model.transformer.h.20': 'cpu',\n",
|
312 |
+
" 'base_model.model.transformer.h.21': 'cpu',\n",
|
313 |
+
" 'base_model.model.transformer.h.22': 'cpu',\n",
|
314 |
+
" 'base_model.model.transformer.h.23': 'cpu',\n",
|
315 |
+
" 'base_model.model.transformer.h.24': 'cpu',\n",
|
316 |
+
" 'base_model.model.transformer.h.25': 'cpu',\n",
|
317 |
+
" 'base_model.model.transformer.h.26': 'cpu',\n",
|
318 |
+
" 'base_model.model.transformer.h.27': 'cpu',\n",
|
319 |
+
" 'base_model.model.transformer.h.28': 'cpu',\n",
|
320 |
+
" 'base_model.model.transformer.h.29': 'cpu',\n",
|
321 |
+
" 'base_model.model.transformer.ln_f': 'cpu'}"
|
322 |
+
]
|
323 |
+
},
|
324 |
+
"execution_count": 7,
|
325 |
+
"metadata": {},
|
326 |
+
"output_type": "execute_result"
|
327 |
+
}
|
328 |
+
],
|
329 |
+
"source": [
|
330 |
+
"model.hf_device_map"
|
331 |
+
]
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"cell_type": "code",
|
335 |
+
"execution_count": 34,
|
336 |
+
"id": "b33be5e6",
|
337 |
+
"metadata": {},
|
338 |
+
"outputs": [
|
339 |
+
{
|
340 |
+
"name": "stdout",
|
341 |
+
"output_type": "stream",
|
342 |
+
"text": [
|
343 |
+
"@HondaCustSvc Your customer service has been horrible during the recall process. I will never purchase a Honda again.\n",
|
344 |
+
"{'input_ids': tensor([[227985, 5484, 915, 2566, 216744, 38, 1316, 54, 42705,\n",
|
345 |
+
" 32465, 52166, 9440, 1809, 3784, 88483, 9411, 368, 84342,\n",
|
346 |
+
" 4451, 17, 473, 2152, 11705, 82406, 267, 51591, 5734,\n",
|
347 |
+
" 17, 77658, 915, 210]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
|
348 |
+
" 1, 1, 1, 1, 1, 1, 1]])}\n",
|
349 |
+
"tensor([[227985, 5484, 915, 2566, 216744, 38, 1316, 54, 42705,\n",
|
350 |
+
" 32465, 52166, 9440, 1809, 3784, 88483, 9411, 368, 84342,\n",
|
351 |
+
" 4451, 17, 473, 2152, 11705, 82406, 267, 51591, 5734,\n",
|
352 |
+
" 17, 77658, 915, 210, 16449, 5952, 3, 3, 3,\n",
|
353 |
+
" 3, 3, 3, 3, 3]])\n",
|
354 |
+
"['Tweet text : @HondaCustSvc Your customer service has been horrible during the recall process. I will never purchase a Honda again. Label : complaint']\n"
|
355 |
+
]
|
356 |
+
}
|
357 |
+
],
|
358 |
+
"source": [
|
359 |
+
"model.eval()\n",
|
360 |
+
"i = 89\n",
|
361 |
+
"inputs = tokenizer(f'{text_column} : {dataset[\"test\"][i][\"Tweet text\"]} Label : ', return_tensors=\"pt\")\n",
|
362 |
+
"print(dataset[\"test\"][i][\"Tweet text\"])\n",
|
363 |
+
"print(inputs)\n",
|
364 |
+
"\n",
|
365 |
+
"with torch.no_grad():\n",
|
366 |
+
" outputs = model.generate(input_ids=inputs[\"input_ids\"], max_new_tokens=10)\n",
|
367 |
+
" print(outputs)\n",
|
368 |
+
" print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))"
|
369 |
+
]
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"cell_type": "code",
|
373 |
+
"execution_count": 9,
|
374 |
+
"id": "b6d6cd5b",
|
375 |
+
"metadata": {},
|
376 |
+
"outputs": [
|
377 |
+
{
|
378 |
+
"name": "stderr",
|
379 |
+
"output_type": "stream",
|
380 |
+
"text": [
|
381 |
+
"100%|███████████████████████████████████████████████████████████████████████████���████████████████| 7/7 [01:42<00:00, 14.70s/it]\n"
|
382 |
+
]
|
383 |
+
}
|
384 |
+
],
|
385 |
+
"source": [
|
386 |
+
"model.eval()\n",
|
387 |
+
"eval_preds = []\n",
|
388 |
+
"for _, batch in enumerate(tqdm(eval_dataloader)):\n",
|
389 |
+
" batch = {k: v for k, v in batch.items() if k != \"labels\"}\n",
|
390 |
+
" with torch.no_grad():\n",
|
391 |
+
" outputs = model.generate(**batch, max_new_tokens=10)\n",
|
392 |
+
" preds = outputs[:, max_length:].detach().cpu().numpy()\n",
|
393 |
+
" eval_preds.extend(tokenizer.batch_decode(preds, skip_special_tokens=True))"
|
394 |
+
]
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"cell_type": "code",
|
398 |
+
"execution_count": 11,
|
399 |
+
"id": "61264abe",
|
400 |
+
"metadata": {},
|
401 |
+
"outputs": [
|
402 |
+
{
|
403 |
+
"name": "stdout",
|
404 |
+
"output_type": "stream",
|
405 |
+
"text": [
|
406 |
+
"accuracy=100.0\n",
|
407 |
+
"eval_preds[:10]=['no complaint', 'no complaint', 'complaint', 'complaint', 'no complaint', 'no complaint', 'no complaint', 'complaint', 'complaint', 'no complaint']\n",
|
408 |
+
"dataset['train'][label_column][:10]=['no complaint', 'no complaint', 'complaint', 'complaint', 'no complaint', 'no complaint', 'no complaint', 'complaint', 'complaint', 'no complaint']\n"
|
409 |
+
]
|
410 |
+
}
|
411 |
+
],
|
412 |
+
"source": [
|
413 |
+
"correct = 0\n",
|
414 |
+
"total = 0\n",
|
415 |
+
"for pred, true in zip(eval_preds, dataset[\"train\"][label_column]):\n",
|
416 |
+
" if pred.strip() == true.strip():\n",
|
417 |
+
" correct += 1\n",
|
418 |
+
" total += 1\n",
|
419 |
+
"accuracy = correct / total * 100\n",
|
420 |
+
"print(f\"{accuracy=}\")\n",
|
421 |
+
"print(f\"{eval_preds[:10]=}\")\n",
|
422 |
+
"print(f\"{dataset['train'][label_column][:10]=}\")"
|
423 |
+
]
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"cell_type": "code",
|
427 |
+
"execution_count": null,
|
428 |
+
"id": "a70802a3",
|
429 |
+
"metadata": {},
|
430 |
+
"outputs": [],
|
431 |
+
"source": [
|
432 |
+
"model.eval()\n",
|
433 |
+
"test_preds = []\n",
|
434 |
+
"\n",
|
435 |
+
"for _, batch in enumerate(tqdm(test_dataloader)):\n",
|
436 |
+
" batch = {k: v for k, v in batch.items() if k != \"labels\"}\n",
|
437 |
+
" with torch.no_grad():\n",
|
438 |
+
" outputs = model.generate(**batch, max_new_tokens=10)\n",
|
439 |
+
" preds = outputs[:, max_length:].detach().cpu().numpy()\n",
|
440 |
+
" test_preds.extend(tokenizer.batch_decode(preds, skip_special_tokens=True))\n",
|
441 |
+
" if len(test_preds) > 100:\n",
|
442 |
+
" break\n",
|
443 |
+
"test_preds"
|
444 |
+
]
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"cell_type": "code",
|
448 |
+
"execution_count": null,
|
449 |
+
"id": "e1c4ad9c",
|
450 |
+
"metadata": {},
|
451 |
+
"outputs": [],
|
452 |
+
"source": []
|
453 |
+
}
|
454 |
+
],
|
455 |
+
"metadata": {
|
456 |
+
"kernelspec": {
|
457 |
+
"display_name": "Python 3 (ipykernel)",
|
458 |
+
"language": "python",
|
459 |
+
"name": "python3"
|
460 |
+
},
|
461 |
+
"language_info": {
|
462 |
+
"codemirror_mode": {
|
463 |
+
"name": "ipython",
|
464 |
+
"version": 3
|
465 |
+
},
|
466 |
+
"file_extension": ".py",
|
467 |
+
"mimetype": "text/x-python",
|
468 |
+
"name": "python",
|
469 |
+
"nbconvert_exporter": "python",
|
470 |
+
"pygments_lexer": "ipython3",
|
471 |
+
"version": "3.10.4"
|
472 |
+
},
|
473 |
+
"vscode": {
|
474 |
+
"interpreter": {
|
475 |
+
"hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
|
476 |
+
}
|
477 |
+
}
|
478 |
+
},
|
479 |
+
"nbformat": 4,
|
480 |
+
"nbformat_minor": 5
|
481 |
+
}
|
lora_clm_with_additional_tokens.ipynb
ADDED
@@ -0,0 +1,1012 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "5f239612-620e-4430-8685-9fdc6b179b41",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"# Training PEFT models with new tokens being added to the embedding layers and tokenizer\n",
|
9 |
+
"\n",
|
10 |
+
"In this example, we will learn how to train a LoRA model when adding new tokens to the tokenizer and model. \n",
|
11 |
+
"This is a common usecase when doing the following:\n",
|
12 |
+
"1. Instruction finetuning with new tokens beind added such as `<|user|>`, `<|assistant|>`, `<|system|>`, `</s>`, `<s>` to properly format the conversations\n",
|
13 |
+
"2. Finetuning on a specific language wherein language spoecific tokens are added, e.g., korean tokens being added to vocabulary for finetuning LLM on Korean datasets.\n",
|
14 |
+
"3. Instruction finetuning to return outputs in certain format to enable agent behaviour new tokens such as `<|FUNCTIONS|>`, `<|BROWSE|>`, `<|TEXT2IMAGE|>`, `<|ASR|>`, `<|TTS|>`, `<|GENERATECODE|>`, `<|RAG|>`.\n",
|
15 |
+
"\n",
|
16 |
+
"In such cases, you add the Embedding modules to the LORA `target_modules`. PEFT will take care of saving the embedding layers with the new added tokens along with the adapter weights that were trained on the specific initialization of the embeddings weights of the added tokens."
|
17 |
+
]
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"cell_type": "markdown",
|
21 |
+
"id": "b27c55e8-edaa-4059-90bc-d6096d596902",
|
22 |
+
"metadata": {},
|
23 |
+
"source": [
|
24 |
+
"Let's import the necessary libraries"
|
25 |
+
]
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"cell_type": "code",
|
29 |
+
"execution_count": 1,
|
30 |
+
"id": "6f864c90",
|
31 |
+
"metadata": {},
|
32 |
+
"outputs": [],
|
33 |
+
"source": [
|
34 |
+
"import os\n",
|
35 |
+
"\n",
|
36 |
+
"os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"3\"\n",
|
37 |
+
"os.environ[\"WANDB_PROJECT\"] = \"PeftExamples\"\n",
|
38 |
+
"import transformers\n",
|
39 |
+
"from peft import (\n",
|
40 |
+
" LoraConfig,\n",
|
41 |
+
" PeftConfig,\n",
|
42 |
+
" PeftModel,\n",
|
43 |
+
" get_peft_model,\n",
|
44 |
+
" prepare_model_for_int8_training,\n",
|
45 |
+
")\n",
|
46 |
+
"from transformers import (\n",
|
47 |
+
" AutoModelForCausalLM,\n",
|
48 |
+
" AutoTokenizer,\n",
|
49 |
+
" HfArgumentParser,\n",
|
50 |
+
" TrainingArguments,\n",
|
51 |
+
" Trainer,\n",
|
52 |
+
" default_data_collator,\n",
|
53 |
+
")\n",
|
54 |
+
"import torch\n",
|
55 |
+
"from dataclasses import dataclass, field\n",
|
56 |
+
"from typing import Optional\n",
|
57 |
+
"from dataclass_csv import DataclassReader\n",
|
58 |
+
"from torch.utils.data import Dataset, DataLoader\n",
|
59 |
+
"\n",
|
60 |
+
"from enum import Enum"
|
61 |
+
]
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"cell_type": "markdown",
|
65 |
+
"id": "74950a3f-bb63-4ce5-9e2b-1b83f92b13a2",
|
66 |
+
"metadata": {},
|
67 |
+
"source": [
|
68 |
+
"## Prepare Model and Tokenizer"
|
69 |
+
]
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"cell_type": "markdown",
|
73 |
+
"id": "76763f5e-64b2-409b-8845-ae5589f8a4e0",
|
74 |
+
"metadata": {},
|
75 |
+
"source": [
|
76 |
+
"Now, we will be adding 27 new tokens as well as replace the existing pad, bos and eos tokens of the model."
|
77 |
+
]
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"cell_type": "code",
|
81 |
+
"execution_count": 2,
|
82 |
+
"id": "fd0498ea-547e-418d-bf13-c9abafdd5476",
|
83 |
+
"metadata": {},
|
84 |
+
"outputs": [],
|
85 |
+
"source": [
|
86 |
+
"class SpecialTokens(str, Enum):\n",
|
87 |
+
" begin_target = \"<|begintarget|>\"\n",
|
88 |
+
" end_target = \"<|endtarget|>\"\n",
|
89 |
+
" begin_context = \"<|begincontext|>\"\n",
|
90 |
+
" end_context = \"<|endcontext|>\"\n",
|
91 |
+
" system = \"<|system|>\"\n",
|
92 |
+
" user = \"<|user|>\"\n",
|
93 |
+
" begin_last_user_utterance = \"<|beginlastuserutterance|>\"\n",
|
94 |
+
" end_last_user_utterance = \"<|endlastuserutterance|>\"\n",
|
95 |
+
" begin_dsts = \"<|begindsts|>\"\n",
|
96 |
+
" end_dsts = \"<|enddsts|>\"\n",
|
97 |
+
" begin_dst = \"<|begindst|>\"\n",
|
98 |
+
" end_dst = \"<|enddst|>\"\n",
|
99 |
+
" begin_belief = \"<|beginbelief|>\"\n",
|
100 |
+
" end_belief = \"<|endbelief|>\"\n",
|
101 |
+
" begin_response = \"<|beginresponse|>\"\n",
|
102 |
+
" end_response = \"<|endresponse|>\"\n",
|
103 |
+
" begin_action = \"<|beginaction|>\"\n",
|
104 |
+
" end_action = \"<|endaction|>\"\n",
|
105 |
+
" begin_user_action = \"<|beginuseraction|>\"\n",
|
106 |
+
" end_user_action = \"<|enduseraction|>\"\n",
|
107 |
+
" sys_actions = \"<|sysactions|>\"\n",
|
108 |
+
" begin_intent = \"<|beginintent|>\"\n",
|
109 |
+
" end_intent = \"<|endintent|>\"\n",
|
110 |
+
" begin_requested_slots = \"<|beginrequestedslots|>\"\n",
|
111 |
+
" end_requested_slots = \"<|endrequestedslots|>\"\n",
|
112 |
+
" pad_token = \"<|pad|>\"\n",
|
113 |
+
" bos_token = \"<|startoftext|>\"\n",
|
114 |
+
"\n",
|
115 |
+
" @classmethod\n",
|
116 |
+
" def list(cls):\n",
|
117 |
+
" return [c.value for c in cls]"
|
118 |
+
]
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"cell_type": "markdown",
|
122 |
+
"id": "ae4a4255-5f13-4eef-a024-4f1de0f2173b",
|
123 |
+
"metadata": {},
|
124 |
+
"source": [
|
125 |
+
"We will be finetuning Mistral-7B model. Let's load the tokenizer and add the special tokens followed by loading the base model and resizzing the embedding layers to accomodate the newly added tokens."
|
126 |
+
]
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"cell_type": "code",
|
130 |
+
"execution_count": 3,
|
131 |
+
"id": "f0eedef9",
|
132 |
+
"metadata": {},
|
133 |
+
"outputs": [
|
134 |
+
{
|
135 |
+
"data": {
|
136 |
+
"application/vnd.jupyter.widget-view+json": {
|
137 |
+
"model_id": "91c67b6377fc4dd7977bf544de784d51",
|
138 |
+
"version_major": 2,
|
139 |
+
"version_minor": 0
|
140 |
+
},
|
141 |
+
"text/plain": [
|
142 |
+
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
|
143 |
+
]
|
144 |
+
},
|
145 |
+
"metadata": {},
|
146 |
+
"output_type": "display_data"
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"data": {
|
150 |
+
"text/plain": [
|
151 |
+
"Embedding(32027, 4096)"
|
152 |
+
]
|
153 |
+
},
|
154 |
+
"execution_count": 3,
|
155 |
+
"metadata": {},
|
156 |
+
"output_type": "execute_result"
|
157 |
+
}
|
158 |
+
],
|
159 |
+
"source": [
|
160 |
+
"model_name = \"mistralai/Mistral-7B-v0.1\"\n",
|
161 |
+
"tokenizer = AutoTokenizer.from_pretrained(\n",
|
162 |
+
" model_name,\n",
|
163 |
+
" pad_token=SpecialTokens.pad_token.value,\n",
|
164 |
+
" bos_token=SpecialTokens.bos_token.value,\n",
|
165 |
+
" eos_token=SpecialTokens.end_target.value,\n",
|
166 |
+
" additional_special_tokens=SpecialTokens.list(),\n",
|
167 |
+
")\n",
|
168 |
+
"model = AutoModelForCausalLM.from_pretrained(\n",
|
169 |
+
" model_name,\n",
|
170 |
+
" low_cpu_mem_usage=True\n",
|
171 |
+
" # use_flash_attention_2=True, # leading to an error\n",
|
172 |
+
")\n",
|
173 |
+
"model.resize_token_embeddings(len(tokenizer))"
|
174 |
+
]
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"cell_type": "markdown",
|
178 |
+
"id": "88439ed6-9974-4918-80df-ec78b05b4185",
|
179 |
+
"metadata": {},
|
180 |
+
"source": [
|
181 |
+
"## Apply LoRA"
|
182 |
+
]
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"cell_type": "code",
|
186 |
+
"execution_count": 4,
|
187 |
+
"id": "80967087",
|
188 |
+
"metadata": {},
|
189 |
+
"outputs": [
|
190 |
+
{
|
191 |
+
"name": "stdout",
|
192 |
+
"output_type": "stream",
|
193 |
+
"text": [
|
194 |
+
"trainable params: 31,886,720 || all params: 7,273,840,000 || trainable%: 0.43837532857472805\n",
|
195 |
+
"None\n",
|
196 |
+
"PeftModel(\n",
|
197 |
+
" (base_model): LoraModel(\n",
|
198 |
+
" (model): MistralForCausalLM(\n",
|
199 |
+
" (model): MistralModel(\n",
|
200 |
+
" (embed_tokens): lora.Embedding(\n",
|
201 |
+
" (base_layer): Embedding(32027, 4096)\n",
|
202 |
+
" (lora_dropout): ModuleDict(\n",
|
203 |
+
" (default): Identity()\n",
|
204 |
+
" )\n",
|
205 |
+
" (lora_A): ModuleDict()\n",
|
206 |
+
" (lora_B): ModuleDict()\n",
|
207 |
+
" (lora_embedding_A): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 64x32027])\n",
|
208 |
+
" (lora_embedding_B): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 4096x64])\n",
|
209 |
+
" )\n",
|
210 |
+
" (layers): ModuleList(\n",
|
211 |
+
" (0-31): 32 x MistralDecoderLayer(\n",
|
212 |
+
" (self_attn): MistralAttention(\n",
|
213 |
+
" (q_proj): lora.Linear(\n",
|
214 |
+
" (base_layer): Linear(in_features=4096, out_features=4096, bias=False)\n",
|
215 |
+
" (lora_dropout): ModuleDict(\n",
|
216 |
+
" (default): Identity()\n",
|
217 |
+
" )\n",
|
218 |
+
" (lora_A): ModuleDict(\n",
|
219 |
+
" (default): Linear(in_features=4096, out_features=64, bias=False)\n",
|
220 |
+
" )\n",
|
221 |
+
" (lora_B): ModuleDict(\n",
|
222 |
+
" (default): Linear(in_features=64, out_features=4096, bias=False)\n",
|
223 |
+
" )\n",
|
224 |
+
" (lora_embedding_A): ParameterDict()\n",
|
225 |
+
" (lora_embedding_B): ParameterDict()\n",
|
226 |
+
" )\n",
|
227 |
+
" (k_proj): Linear(in_features=4096, out_features=1024, bias=False)\n",
|
228 |
+
" (v_proj): lora.Linear(\n",
|
229 |
+
" (base_layer): Linear(in_features=4096, out_features=1024, bias=False)\n",
|
230 |
+
" (lora_dropout): ModuleDict(\n",
|
231 |
+
" (default): Identity()\n",
|
232 |
+
" )\n",
|
233 |
+
" (lora_A): ModuleDict(\n",
|
234 |
+
" (default): Linear(in_features=4096, out_features=64, bias=False)\n",
|
235 |
+
" )\n",
|
236 |
+
" (lora_B): ModuleDict(\n",
|
237 |
+
" (default): Linear(in_features=64, out_features=1024, bias=False)\n",
|
238 |
+
" )\n",
|
239 |
+
" (lora_embedding_A): ParameterDict()\n",
|
240 |
+
" (lora_embedding_B): ParameterDict()\n",
|
241 |
+
" )\n",
|
242 |
+
" (o_proj): Linear(in_features=4096, out_features=4096, bias=False)\n",
|
243 |
+
" (rotary_emb): MistralRotaryEmbedding()\n",
|
244 |
+
" )\n",
|
245 |
+
" (mlp): MistralMLP(\n",
|
246 |
+
" (gate_proj): Linear(in_features=4096, out_features=14336, bias=False)\n",
|
247 |
+
" (up_proj): Linear(in_features=4096, out_features=14336, bias=False)\n",
|
248 |
+
" (down_proj): Linear(in_features=14336, out_features=4096, bias=False)\n",
|
249 |
+
" (act_fn): SiLU()\n",
|
250 |
+
" )\n",
|
251 |
+
" (input_layernorm): MistralRMSNorm()\n",
|
252 |
+
" (post_attention_layernorm): MistralRMSNorm()\n",
|
253 |
+
" )\n",
|
254 |
+
" )\n",
|
255 |
+
" (norm): MistralRMSNorm()\n",
|
256 |
+
" )\n",
|
257 |
+
" (lm_head): lora.Linear(\n",
|
258 |
+
" (base_layer): Linear(in_features=4096, out_features=32027, bias=False)\n",
|
259 |
+
" (lora_dropout): ModuleDict(\n",
|
260 |
+
" (default): Identity()\n",
|
261 |
+
" )\n",
|
262 |
+
" (lora_A): ModuleDict(\n",
|
263 |
+
" (default): Linear(in_features=4096, out_features=64, bias=False)\n",
|
264 |
+
" )\n",
|
265 |
+
" (lora_B): ModuleDict(\n",
|
266 |
+
" (default): Linear(in_features=64, out_features=32027, bias=False)\n",
|
267 |
+
" )\n",
|
268 |
+
" (lora_embedding_A): ParameterDict()\n",
|
269 |
+
" (lora_embedding_B): ParameterDict()\n",
|
270 |
+
" )\n",
|
271 |
+
" )\n",
|
272 |
+
" )\n",
|
273 |
+
")\n"
|
274 |
+
]
|
275 |
+
}
|
276 |
+
],
|
277 |
+
"source": [
|
278 |
+
"config = LoraConfig(\n",
|
279 |
+
" r=64, lora_alpha=128, lora_dropout=0.0, target_modules=[\"embed_tokens\", \"lm_head\", \"q_proj\", \"v_proj\"]\n",
|
280 |
+
")\n",
|
281 |
+
"model = get_peft_model(model, config)\n",
|
282 |
+
"print(model.print_trainable_parameters())\n",
|
283 |
+
"print(model)"
|
284 |
+
]
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"cell_type": "markdown",
|
288 |
+
"id": "15ac9945-4fcb-45f4-9478-d99a25a519cc",
|
289 |
+
"metadata": {},
|
290 |
+
"source": [
|
291 |
+
"## Preapre Dataset"
|
292 |
+
]
|
293 |
+
},
|
294 |
+
{
|
295 |
+
"cell_type": "code",
|
296 |
+
"execution_count": 5,
|
297 |
+
"id": "c6980d59-42d4-4a27-84cc-a9719302088b",
|
298 |
+
"metadata": {},
|
299 |
+
"outputs": [
|
300 |
+
{
|
301 |
+
"data": {
|
302 |
+
"application/vnd.jupyter.widget-view+json": {
|
303 |
+
"model_id": "33d9539232da48f3ae922216b98ae462",
|
304 |
+
"version_major": 2,
|
305 |
+
"version_minor": 0
|
306 |
+
},
|
307 |
+
"text/plain": [
|
308 |
+
"Running tokenizer on dataset: 0%| | 0/986 [00:00<?, ? examples/s]"
|
309 |
+
]
|
310 |
+
},
|
311 |
+
"metadata": {},
|
312 |
+
"output_type": "display_data"
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"data": {
|
316 |
+
"application/vnd.jupyter.widget-view+json": {
|
317 |
+
"model_id": "b7a33811d93742099140240cad91b679",
|
318 |
+
"version_major": 2,
|
319 |
+
"version_minor": 0
|
320 |
+
},
|
321 |
+
"text/plain": [
|
322 |
+
"Running tokenizer on dataset: 0%| | 0/247 [00:00<?, ? examples/s]"
|
323 |
+
]
|
324 |
+
},
|
325 |
+
"metadata": {},
|
326 |
+
"output_type": "display_data"
|
327 |
+
}
|
328 |
+
],
|
329 |
+
"source": [
|
330 |
+
"from datasets import load_dataset\n",
|
331 |
+
"\n",
|
332 |
+
"dataset = load_dataset(\"smangrul/assistant_chatbot_dataset\")\n",
|
333 |
+
"dataset = dataset[\"train\"].train_test_split(0.2)\n",
|
334 |
+
"\n",
|
335 |
+
"text_column = \"context\"\n",
|
336 |
+
"label_column = \"target\"\n",
|
337 |
+
"max_length = 512\n",
|
338 |
+
"\n",
|
339 |
+
"\n",
|
340 |
+
"def preprocess_function(examples):\n",
|
341 |
+
" batch_size = len(examples[text_column])\n",
|
342 |
+
" targets = [str(x) for x in examples[label_column]]\n",
|
343 |
+
" model_inputs = tokenizer(examples[text_column])\n",
|
344 |
+
" labels = tokenizer(targets, add_special_tokens=False) # don't add bos token because we concatenate with inputs\n",
|
345 |
+
" for i in range(batch_size):\n",
|
346 |
+
" sample_input_ids = model_inputs[\"input_ids\"][i]\n",
|
347 |
+
" label_input_ids = labels[\"input_ids\"][i] + [tokenizer.eos_token_id]\n",
|
348 |
+
" # print(i, sample_input_ids, label_input_ids)\n",
|
349 |
+
" model_inputs[\"input_ids\"][i] = sample_input_ids + label_input_ids\n",
|
350 |
+
" labels[\"input_ids\"][i] = [-100] * len(sample_input_ids) + label_input_ids\n",
|
351 |
+
" model_inputs[\"attention_mask\"][i] = [1] * len(model_inputs[\"input_ids\"][i])\n",
|
352 |
+
" # print(model_inputs)\n",
|
353 |
+
" for i in range(batch_size):\n",
|
354 |
+
" sample_input_ids = model_inputs[\"input_ids\"][i]\n",
|
355 |
+
" label_input_ids = labels[\"input_ids\"][i]\n",
|
356 |
+
" model_inputs[\"input_ids\"][i] = [tokenizer.pad_token_id] * (\n",
|
357 |
+
" max_length - len(sample_input_ids)\n",
|
358 |
+
" ) + sample_input_ids\n",
|
359 |
+
" model_inputs[\"attention_mask\"][i] = [0] * (max_length - len(sample_input_ids)) + model_inputs[\n",
|
360 |
+
" \"attention_mask\"\n",
|
361 |
+
" ][i]\n",
|
362 |
+
" labels[\"input_ids\"][i] = [-100] * (max_length - len(sample_input_ids)) + label_input_ids\n",
|
363 |
+
" model_inputs[\"input_ids\"][i] = model_inputs[\"input_ids\"][i][:max_length]\n",
|
364 |
+
" model_inputs[\"attention_mask\"][i] = model_inputs[\"attention_mask\"][i][:max_length]\n",
|
365 |
+
" labels[\"input_ids\"][i] = labels[\"input_ids\"][i][:max_length]\n",
|
366 |
+
" model_inputs[\"labels\"] = labels[\"input_ids\"]\n",
|
367 |
+
" return model_inputs\n",
|
368 |
+
"\n",
|
369 |
+
"\n",
|
370 |
+
"processed_datasets = dataset.map(\n",
|
371 |
+
" preprocess_function,\n",
|
372 |
+
" batched=True,\n",
|
373 |
+
" num_proc=1,\n",
|
374 |
+
" remove_columns=dataset[\"train\"].column_names,\n",
|
375 |
+
" load_from_cache_file=False,\n",
|
376 |
+
" desc=\"Running tokenizer on dataset\",\n",
|
377 |
+
")\n",
|
378 |
+
"\n",
|
379 |
+
"train_dataset = processed_datasets[\"train\"]"
|
380 |
+
]
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"cell_type": "code",
|
384 |
+
"execution_count": 6,
|
385 |
+
"id": "5671b1ee-dca4-4705-8399-5c2967b9fb5c",
|
386 |
+
"metadata": {},
|
387 |
+
"outputs": [
|
388 |
+
{
|
389 |
+
"data": {
|
390 |
+
"text/plain": [
|
391 |
+
"Dataset({\n",
|
392 |
+
" features: ['input_ids', 'attention_mask', 'labels'],\n",
|
393 |
+
" num_rows: 986\n",
|
394 |
+
"})"
|
395 |
+
]
|
396 |
+
},
|
397 |
+
"execution_count": 6,
|
398 |
+
"metadata": {},
|
399 |
+
"output_type": "execute_result"
|
400 |
+
}
|
401 |
+
],
|
402 |
+
"source": [
|
403 |
+
"train_dataset"
|
404 |
+
]
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"cell_type": "code",
|
408 |
+
"execution_count": 7,
|
409 |
+
"id": "3f38888e-4382-415b-869d-7202a816606a",
|
410 |
+
"metadata": {},
|
411 |
+
"outputs": [],
|
412 |
+
"source": [
|
413 |
+
"train_dataloader = DataLoader(\n",
|
414 |
+
" train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=8, pin_memory=True\n",
|
415 |
+
")"
|
416 |
+
]
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"cell_type": "code",
|
420 |
+
"execution_count": 8,
|
421 |
+
"id": "53b9e552-4c5d-43e8-a9cd-8073af8d4280",
|
422 |
+
"metadata": {},
|
423 |
+
"outputs": [
|
424 |
+
{
|
425 |
+
"data": {
|
426 |
+
"text/plain": [
|
427 |
+
"{'input_ids': tensor([[32002, 32002, 32002, ..., 32017, 32001, 32001],\n",
|
428 |
+
" [32002, 32002, 32002, ..., 32017, 32001, 32001],\n",
|
429 |
+
" [32002, 32002, 32002, ..., 32017, 32001, 32001],\n",
|
430 |
+
" ...,\n",
|
431 |
+
" [32002, 32002, 32002, ..., 32017, 32001, 32001],\n",
|
432 |
+
" [32002, 32002, 32002, ..., 32017, 32001, 32001],\n",
|
433 |
+
" [32002, 32002, 32002, ..., 32017, 32001, 32001]]),\n",
|
434 |
+
" 'attention_mask': tensor([[0, 0, 0, ..., 1, 1, 1],\n",
|
435 |
+
" [0, 0, 0, ..., 1, 1, 1],\n",
|
436 |
+
" [0, 0, 0, ..., 1, 1, 1],\n",
|
437 |
+
" ...,\n",
|
438 |
+
" [0, 0, 0, ..., 1, 1, 1],\n",
|
439 |
+
" [0, 0, 0, ..., 1, 1, 1],\n",
|
440 |
+
" [0, 0, 0, ..., 1, 1, 1]]),\n",
|
441 |
+
" 'labels': tensor([[ -100, -100, -100, ..., 32017, 32001, 32001],\n",
|
442 |
+
" [ -100, -100, -100, ..., 32017, 32001, 32001],\n",
|
443 |
+
" [ -100, -100, -100, ..., 32017, 32001, 32001],\n",
|
444 |
+
" ...,\n",
|
445 |
+
" [ -100, -100, -100, ..., 32017, 32001, 32001],\n",
|
446 |
+
" [ -100, -100, -100, ..., 32017, 32001, 32001],\n",
|
447 |
+
" [ -100, -100, -100, ..., 32017, 32001, 32001]])}"
|
448 |
+
]
|
449 |
+
},
|
450 |
+
"execution_count": 8,
|
451 |
+
"metadata": {},
|
452 |
+
"output_type": "execute_result"
|
453 |
+
}
|
454 |
+
],
|
455 |
+
"source": [
|
456 |
+
"next(iter(train_dataloader))"
|
457 |
+
]
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"cell_type": "code",
|
461 |
+
"execution_count": 9,
|
462 |
+
"id": "7de31ee2-185e-4658-9ad1-ae5f6bc3a611",
|
463 |
+
"metadata": {},
|
464 |
+
"outputs": [
|
465 |
+
{
|
466 |
+
"data": {
|
467 |
+
"text/plain": [
|
468 |
+
"\"<|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|startoftext|><|begincontext|><|user|> Can you find me place to eat?<|system|> What kind of food would you like to have and where would you like me to search in?<|user|> Food kind of California will be perfect in SF.<|system|> There are 10 restaurants, Al's Place is one of the good restaurant in San Francisco.<|user|> Can you look for any other restaurant?<|system|> Alta Msp is one of the good restaurant in San Francisco.<|beginlastuserutterance|> Can you find me the address?<|endlastuserutterance|><|endcontext|><|begintarget|><|begindsts|><|begindst|><|beginintent|> FindRestaurants<|endintent|><|beginrequestedslots|> Restaurants^street_address<|endrequestedslots|><|beginbelief|> Restaurants^city->SF~San Francisco|Restaurants^cuisine->California<|endbelief|><|enddst|><|enddsts|><|beginuseraction|> REQUEST->Restaurants^street_address~<|enduseraction|><|beginaction|> INFORM->Restaurants^street_address~1275 Minnesota Street<|endaction|><|beginresponse|> The street address of the restaurant is 1275 Minnesota Street.<|endresponse|><|endtarget|><|endtarget|>\""
|
469 |
+
]
|
470 |
+
},
|
471 |
+
"execution_count": 9,
|
472 |
+
"metadata": {},
|
473 |
+
"output_type": "execute_result"
|
474 |
+
}
|
475 |
+
],
|
476 |
+
"source": [
|
477 |
+
"tokenizer.decode(train_dataset[0][\"input_ids\"])"
|
478 |
+
]
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"cell_type": "markdown",
|
482 |
+
"id": "239d1c83-196d-471e-9bf7-5f36dafa9894",
|
483 |
+
"metadata": {},
|
484 |
+
"source": [
|
485 |
+
"# Train the model"
|
486 |
+
]
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"cell_type": "code",
|
490 |
+
"execution_count": 10,
|
491 |
+
"id": "ec80d6ee",
|
492 |
+
"metadata": {},
|
493 |
+
"outputs": [
|
494 |
+
{
|
495 |
+
"name": "stderr",
|
496 |
+
"output_type": "stream",
|
497 |
+
"text": [
|
498 |
+
"Detected kernel version 5.4.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n",
|
499 |
+
"Failed to detect the name of this notebook, you can set it manually with the WANDB_NOTEBOOK_NAME environment variable to enable code saving.\n",
|
500 |
+
"\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33msmangrul\u001b[0m. Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n"
|
501 |
+
]
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"data": {
|
505 |
+
"text/html": [
|
506 |
+
"Tracking run with wandb version 0.16.0"
|
507 |
+
],
|
508 |
+
"text/plain": [
|
509 |
+
"<IPython.core.display.HTML object>"
|
510 |
+
]
|
511 |
+
},
|
512 |
+
"metadata": {},
|
513 |
+
"output_type": "display_data"
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"data": {
|
517 |
+
"text/html": [
|
518 |
+
"Run data is saved locally in <code>/raid/sourab/temp/wandb/run-20231128_230934-edod21gq</code>"
|
519 |
+
],
|
520 |
+
"text/plain": [
|
521 |
+
"<IPython.core.display.HTML object>"
|
522 |
+
]
|
523 |
+
},
|
524 |
+
"metadata": {},
|
525 |
+
"output_type": "display_data"
|
526 |
+
},
|
527 |
+
{
|
528 |
+
"data": {
|
529 |
+
"text/html": [
|
530 |
+
"Syncing run <strong><a href='https://wandb.ai/smangrul/PeftExamples/runs/edod21gq' target=\"_blank\">ethereal-eon-1</a></strong> to <a href='https://wandb.ai/smangrul/PeftExamples' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>"
|
531 |
+
],
|
532 |
+
"text/plain": [
|
533 |
+
"<IPython.core.display.HTML object>"
|
534 |
+
]
|
535 |
+
},
|
536 |
+
"metadata": {},
|
537 |
+
"output_type": "display_data"
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"data": {
|
541 |
+
"text/html": [
|
542 |
+
" View project at <a href='https://wandb.ai/smangrul/PeftExamples' target=\"_blank\">https://wandb.ai/smangrul/PeftExamples</a>"
|
543 |
+
],
|
544 |
+
"text/plain": [
|
545 |
+
"<IPython.core.display.HTML object>"
|
546 |
+
]
|
547 |
+
},
|
548 |
+
"metadata": {},
|
549 |
+
"output_type": "display_data"
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"data": {
|
553 |
+
"text/html": [
|
554 |
+
" View run at <a href='https://wandb.ai/smangrul/PeftExamples/runs/edod21gq' target=\"_blank\">https://wandb.ai/smangrul/PeftExamples/runs/edod21gq</a>"
|
555 |
+
],
|
556 |
+
"text/plain": [
|
557 |
+
"<IPython.core.display.HTML object>"
|
558 |
+
]
|
559 |
+
},
|
560 |
+
"metadata": {},
|
561 |
+
"output_type": "display_data"
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"name": "stderr",
|
565 |
+
"output_type": "stream",
|
566 |
+
"text": [
|
567 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...\n"
|
568 |
+
]
|
569 |
+
},
|
570 |
+
{
|
571 |
+
"data": {
|
572 |
+
"text/html": [
|
573 |
+
"\n",
|
574 |
+
" <div>\n",
|
575 |
+
" \n",
|
576 |
+
" <progress value='246' max='246' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
577 |
+
" [246/246 05:51, Epoch 2/2]\n",
|
578 |
+
" </div>\n",
|
579 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
580 |
+
" <thead>\n",
|
581 |
+
" <tr style=\"text-align: left;\">\n",
|
582 |
+
" <th>Step</th>\n",
|
583 |
+
" <th>Training Loss</th>\n",
|
584 |
+
" </tr>\n",
|
585 |
+
" </thead>\n",
|
586 |
+
" <tbody>\n",
|
587 |
+
" <tr>\n",
|
588 |
+
" <td>10</td>\n",
|
589 |
+
" <td>5.189800</td>\n",
|
590 |
+
" </tr>\n",
|
591 |
+
" <tr>\n",
|
592 |
+
" <td>20</td>\n",
|
593 |
+
" <td>3.745500</td>\n",
|
594 |
+
" </tr>\n",
|
595 |
+
" <tr>\n",
|
596 |
+
" <td>30</td>\n",
|
597 |
+
" <td>2.371500</td>\n",
|
598 |
+
" </tr>\n",
|
599 |
+
" <tr>\n",
|
600 |
+
" <td>40</td>\n",
|
601 |
+
" <td>1.630200</td>\n",
|
602 |
+
" </tr>\n",
|
603 |
+
" <tr>\n",
|
604 |
+
" <td>50</td>\n",
|
605 |
+
" <td>1.302600</td>\n",
|
606 |
+
" </tr>\n",
|
607 |
+
" <tr>\n",
|
608 |
+
" <td>60</td>\n",
|
609 |
+
" <td>0.999400</td>\n",
|
610 |
+
" </tr>\n",
|
611 |
+
" <tr>\n",
|
612 |
+
" <td>70</td>\n",
|
613 |
+
" <td>0.704100</td>\n",
|
614 |
+
" </tr>\n",
|
615 |
+
" <tr>\n",
|
616 |
+
" <td>80</td>\n",
|
617 |
+
" <td>0.527800</td>\n",
|
618 |
+
" </tr>\n",
|
619 |
+
" <tr>\n",
|
620 |
+
" <td>90</td>\n",
|
621 |
+
" <td>0.509700</td>\n",
|
622 |
+
" </tr>\n",
|
623 |
+
" <tr>\n",
|
624 |
+
" <td>100</td>\n",
|
625 |
+
" <td>0.382300</td>\n",
|
626 |
+
" </tr>\n",
|
627 |
+
" <tr>\n",
|
628 |
+
" <td>110</td>\n",
|
629 |
+
" <td>0.318200</td>\n",
|
630 |
+
" </tr>\n",
|
631 |
+
" <tr>\n",
|
632 |
+
" <td>120</td>\n",
|
633 |
+
" <td>0.323500</td>\n",
|
634 |
+
" </tr>\n",
|
635 |
+
" <tr>\n",
|
636 |
+
" <td>130</td>\n",
|
637 |
+
" <td>0.263400</td>\n",
|
638 |
+
" </tr>\n",
|
639 |
+
" <tr>\n",
|
640 |
+
" <td>140</td>\n",
|
641 |
+
" <td>0.290900</td>\n",
|
642 |
+
" </tr>\n",
|
643 |
+
" <tr>\n",
|
644 |
+
" <td>150</td>\n",
|
645 |
+
" <td>0.277400</td>\n",
|
646 |
+
" </tr>\n",
|
647 |
+
" <tr>\n",
|
648 |
+
" <td>160</td>\n",
|
649 |
+
" <td>0.232800</td>\n",
|
650 |
+
" </tr>\n",
|
651 |
+
" <tr>\n",
|
652 |
+
" <td>170</td>\n",
|
653 |
+
" <td>0.223600</td>\n",
|
654 |
+
" </tr>\n",
|
655 |
+
" <tr>\n",
|
656 |
+
" <td>180</td>\n",
|
657 |
+
" <td>0.229600</td>\n",
|
658 |
+
" </tr>\n",
|
659 |
+
" <tr>\n",
|
660 |
+
" <td>190</td>\n",
|
661 |
+
" <td>0.233100</td>\n",
|
662 |
+
" </tr>\n",
|
663 |
+
" <tr>\n",
|
664 |
+
" <td>200</td>\n",
|
665 |
+
" <td>0.210200</td>\n",
|
666 |
+
" </tr>\n",
|
667 |
+
" <tr>\n",
|
668 |
+
" <td>210</td>\n",
|
669 |
+
" <td>0.245800</td>\n",
|
670 |
+
" </tr>\n",
|
671 |
+
" <tr>\n",
|
672 |
+
" <td>220</td>\n",
|
673 |
+
" <td>0.197300</td>\n",
|
674 |
+
" </tr>\n",
|
675 |
+
" <tr>\n",
|
676 |
+
" <td>230</td>\n",
|
677 |
+
" <td>0.210100</td>\n",
|
678 |
+
" </tr>\n",
|
679 |
+
" <tr>\n",
|
680 |
+
" <td>240</td>\n",
|
681 |
+
" <td>0.209800</td>\n",
|
682 |
+
" </tr>\n",
|
683 |
+
" </tbody>\n",
|
684 |
+
"</table><p>"
|
685 |
+
],
|
686 |
+
"text/plain": [
|
687 |
+
"<IPython.core.display.HTML object>"
|
688 |
+
]
|
689 |
+
},
|
690 |
+
"metadata": {},
|
691 |
+
"output_type": "display_data"
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"data": {
|
695 |
+
"text/plain": [
|
696 |
+
"TrainOutput(global_step=246, training_loss=0.8516577879587809, metrics={'train_runtime': 354.9013, 'train_samples_per_second': 5.556, 'train_steps_per_second': 0.693, 'total_flos': 4.318233532091597e+16, 'train_loss': 0.8516577879587809, 'epoch': 2.0})"
|
697 |
+
]
|
698 |
+
},
|
699 |
+
"execution_count": 10,
|
700 |
+
"metadata": {},
|
701 |
+
"output_type": "execute_result"
|
702 |
+
}
|
703 |
+
],
|
704 |
+
"source": [
|
705 |
+
"training_args = TrainingArguments(\n",
|
706 |
+
" output_dir=\"mistral_lora_clm_with_added_tokens\",\n",
|
707 |
+
" num_train_epochs=2,\n",
|
708 |
+
" save_total_limit=5,\n",
|
709 |
+
" per_device_train_batch_size=8,\n",
|
710 |
+
" warmup_steps=10,\n",
|
711 |
+
" weight_decay=0.0001,\n",
|
712 |
+
" dataloader_drop_last=True,\n",
|
713 |
+
" bf16=True,\n",
|
714 |
+
" logging_steps=10,\n",
|
715 |
+
" learning_rate=1e-5,\n",
|
716 |
+
" gradient_checkpointing=True,\n",
|
717 |
+
" gradient_checkpointing_kwargs={\"use_reentrant\": False},\n",
|
718 |
+
" remove_unused_columns=False,\n",
|
719 |
+
" hub_model_id=\"smangrul/mistral_lora_clm_with_added_tokens\",\n",
|
720 |
+
" push_to_hub=True,\n",
|
721 |
+
" hub_private_repo=True,\n",
|
722 |
+
")\n",
|
723 |
+
"trainer = Trainer(\n",
|
724 |
+
" model=model,\n",
|
725 |
+
" args=training_args,\n",
|
726 |
+
" train_dataset=train_dataset,\n",
|
727 |
+
" data_collator=default_data_collator,\n",
|
728 |
+
")\n",
|
729 |
+
"# model.config.use_cache = False\n",
|
730 |
+
"trainer.train()"
|
731 |
+
]
|
732 |
+
},
|
733 |
+
{
|
734 |
+
"cell_type": "markdown",
|
735 |
+
"id": "7bc1cbed-4eb9-4aaa-ab5f-5b91bf432307",
|
736 |
+
"metadata": {},
|
737 |
+
"source": [
|
738 |
+
"# Check the model output on a sample from evaluation dataset"
|
739 |
+
]
|
740 |
+
},
|
741 |
+
{
|
742 |
+
"cell_type": "code",
|
743 |
+
"execution_count": 11,
|
744 |
+
"id": "71851793",
|
745 |
+
"metadata": {},
|
746 |
+
"outputs": [
|
747 |
+
{
|
748 |
+
"name": "stdout",
|
749 |
+
"output_type": "stream",
|
750 |
+
"text": [
|
751 |
+
"context=\"<|begincontext|><|user|>Can you find me a place to eat please?<|system|>Where at? And what kind of cuisine are you craving?<|user|>Somewhere in SF, and I am really craving Thai food at the moment!<|system|>I found a bunch of restaurants, there's actually 10 that you might like in San Francisco, one of them being Baan Thai House & Wine Bar<|user|>How can I reach them? And what's their address?<|system|>You can reach them by phone at 415-379-4505 and visit them at 534 Irving Street<|beginlastuserutterance|>Great, that restaurant sounds good<|endlastuserutterance|><|endcontext|>\" \n",
|
752 |
+
"\n",
|
753 |
+
" target_predicted='<|begintarget|><|begindsts|><|begindst|><|beginintent|> FindRestaurants<|endintent|><|beginbelief|> Restaurants^city->SF~San Francisco|Restaurants^cuisine->Thai|Restaurants^restaurant_name->Baan Thai House & Wine Bar<|endbelief|><|enddst|><|enddsts|><|beginuseraction|> REQUEST->Restaurants^phone_number~|REQUEST->Restaurants^street_address~<|enduseraction|><|beginaction|> INFORM->Restaurants^phone_number~415-379-4505|INFORM->Restaurants^street_address~534 Irving Street<|endaction|><|beginresponse|> Great, the phone number is 415-379-4505 and the address is 534 Irving Street<|endresponse|><|endtarget|>' \n",
|
754 |
+
"\n",
|
755 |
+
" target='<|begintarget|><|begindsts|><|begindst|><|beginintent|>FindRestaurants<|endintent|><|beginbelief|>Restaurants^city->SF~San Francisco|Restaurants^cuisine->Thai|Restaurants^restaurant_name->Baan Thai House & Wine Bar<|endbelief|><|enddst|><|enddsts|><|beginuseraction|>SELECT->Restaurants^~<|enduseraction|><|beginaction|>OFFER_INTENT->Restaurants^intent~ReserveRestaurant<|endaction|><|beginresponse|>Want me to book a table?<|endresponse|><|endtarget|>'\n"
|
756 |
+
]
|
757 |
+
}
|
758 |
+
],
|
759 |
+
"source": [
|
760 |
+
"import random\n",
|
761 |
+
"\n",
|
762 |
+
"i = random.randint(0, len(dataset[\"test\"]))\n",
|
763 |
+
"context = dataset[\"test\"][i][\"context\"]\n",
|
764 |
+
"\n",
|
765 |
+
"batch = tokenizer(context, return_tensors=\"pt\")\n",
|
766 |
+
"batch = {k: v.to(\"cuda\") for k, v in batch.items()}\n",
|
767 |
+
"model.eval()\n",
|
768 |
+
"output_tokens = model.generate(\n",
|
769 |
+
" **batch,\n",
|
770 |
+
" max_new_tokens=256,\n",
|
771 |
+
" do_sample=True,\n",
|
772 |
+
" temperature=0.2,\n",
|
773 |
+
" top_p=0.95,\n",
|
774 |
+
" top_k=50,\n",
|
775 |
+
" eos_token_id=tokenizer.eos_token_id,\n",
|
776 |
+
" pad_token_id=tokenizer.pad_token_id,\n",
|
777 |
+
")\n",
|
778 |
+
"target_predicted = tokenizer.decode(output_tokens[0], skip_special_tokens=False).split(\"<|endcontext|>\")[1]\n",
|
779 |
+
"target = dataset[\"test\"][i][\"target\"]\n",
|
780 |
+
"print(f\"{context=} \\n\\n {target_predicted=} \\n\\n {target=}\")"
|
781 |
+
]
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"cell_type": "markdown",
|
785 |
+
"id": "f940a660-2f7c-4a3a-b412-3f037aedb890",
|
786 |
+
"metadata": {},
|
787 |
+
"source": [
|
788 |
+
"# Save the Adapter model "
|
789 |
+
]
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"cell_type": "markdown",
|
793 |
+
"id": "7ebe05e9-9b93-42f6-bba8-46b8cc3d100f",
|
794 |
+
"metadata": {},
|
795 |
+
"source": [
|
796 |
+
"When the lora layers are applied to embedding layers, the corresponding base model embedding layers are also saved. "
|
797 |
+
]
|
798 |
+
},
|
799 |
+
{
|
800 |
+
"cell_type": "code",
|
801 |
+
"execution_count": 12,
|
802 |
+
"id": "3d7459ba-caa8-4f10-aa70-89be4541cbdf",
|
803 |
+
"metadata": {},
|
804 |
+
"outputs": [
|
805 |
+
{
|
806 |
+
"name": "stderr",
|
807 |
+
"output_type": "stream",
|
808 |
+
"text": [
|
809 |
+
"/raid/sourab/peft/src/peft/utils/save_and_load.py:128: UserWarning: Setting `is_embedding_layer_resized` to `True` as embedding layers found in `target_modules`\n",
|
810 |
+
" warnings.warn(\"Setting `is_embedding_layer_resized` to `True` as embedding layers found in `target_modules`\")\n"
|
811 |
+
]
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"data": {
|
815 |
+
"application/vnd.jupyter.widget-view+json": {
|
816 |
+
"model_id": "8d23186832014f209939ab83e79da011",
|
817 |
+
"version_major": 2,
|
818 |
+
"version_minor": 0
|
819 |
+
},
|
820 |
+
"text/plain": [
|
821 |
+
"Upload 3 LFS files: 0%| | 0/3 [00:00<?, ?it/s]"
|
822 |
+
]
|
823 |
+
},
|
824 |
+
"metadata": {},
|
825 |
+
"output_type": "display_data"
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"data": {
|
829 |
+
"application/vnd.jupyter.widget-view+json": {
|
830 |
+
"model_id": "a3d831bc7d8843038364e821aacff5f1",
|
831 |
+
"version_major": 2,
|
832 |
+
"version_minor": 0
|
833 |
+
},
|
834 |
+
"text/plain": [
|
835 |
+
"adapter_model.safetensors: 0%| | 0.00/1.18G [00:00<?, ?B/s]"
|
836 |
+
]
|
837 |
+
},
|
838 |
+
"metadata": {},
|
839 |
+
"output_type": "display_data"
|
840 |
+
},
|
841 |
+
{
|
842 |
+
"data": {
|
843 |
+
"application/vnd.jupyter.widget-view+json": {
|
844 |
+
"model_id": "84cc7a2a3a474bb791d61e2357dd229e",
|
845 |
+
"version_major": 2,
|
846 |
+
"version_minor": 0
|
847 |
+
},
|
848 |
+
"text/plain": [
|
849 |
+
"events.out.tfevents.1701209373.hf-dgx-01.667111.0: 0%| | 0.00/8.52k [00:00<?, ?B/s]"
|
850 |
+
]
|
851 |
+
},
|
852 |
+
"metadata": {},
|
853 |
+
"output_type": "display_data"
|
854 |
+
},
|
855 |
+
{
|
856 |
+
"data": {
|
857 |
+
"application/vnd.jupyter.widget-view+json": {
|
858 |
+
"model_id": "7ce2025dd01647599c00578044512c8c",
|
859 |
+
"version_major": 2,
|
860 |
+
"version_minor": 0
|
861 |
+
},
|
862 |
+
"text/plain": [
|
863 |
+
"training_args.bin: 0%| | 0.00/4.79k [00:00<?, ?B/s]"
|
864 |
+
]
|
865 |
+
},
|
866 |
+
"metadata": {},
|
867 |
+
"output_type": "display_data"
|
868 |
+
},
|
869 |
+
{
|
870 |
+
"data": {
|
871 |
+
"text/plain": [
|
872 |
+
"CommitInfo(commit_url='https://huggingface.co/smangrul/mistral_lora_clm_with_added_tokens/commit/60ed7ea8bef10ce46d7a64229481dd1ad0e3d1c5', commit_message='Upload model', commit_description='', oid='60ed7ea8bef10ce46d7a64229481dd1ad0e3d1c5', pr_url=None, pr_revision=None, pr_num=None)"
|
873 |
+
]
|
874 |
+
},
|
875 |
+
"execution_count": 12,
|
876 |
+
"metadata": {},
|
877 |
+
"output_type": "execute_result"
|
878 |
+
}
|
879 |
+
],
|
880 |
+
"source": [
|
881 |
+
"trainer.push_to_hub()\n",
|
882 |
+
"trainer.model.push_to_hub(training_args.output_dir)"
|
883 |
+
]
|
884 |
+
},
|
885 |
+
{
|
886 |
+
"cell_type": "markdown",
|
887 |
+
"id": "66812cc4-f9a3-46c4-bcee-0cba03950685",
|
888 |
+
"metadata": {},
|
889 |
+
"source": [
|
890 |
+
"# Check the model loading is working as expected and generating plausible outputs."
|
891 |
+
]
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"cell_type": "code",
|
895 |
+
"execution_count": 13,
|
896 |
+
"id": "589c46d7-d567-40b4-ab7d-e0a9e1cab40e",
|
897 |
+
"metadata": {},
|
898 |
+
"outputs": [
|
899 |
+
{
|
900 |
+
"data": {
|
901 |
+
"application/vnd.jupyter.widget-view+json": {
|
902 |
+
"model_id": "f98524da95b64a29a9016c6067313b2b",
|
903 |
+
"version_major": 2,
|
904 |
+
"version_minor": 0
|
905 |
+
},
|
906 |
+
"text/plain": [
|
907 |
+
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
|
908 |
+
]
|
909 |
+
},
|
910 |
+
"metadata": {},
|
911 |
+
"output_type": "display_data"
|
912 |
+
},
|
913 |
+
{
|
914 |
+
"data": {
|
915 |
+
"application/vnd.jupyter.widget-view+json": {
|
916 |
+
"model_id": "aaae3bc0f52f45bbaab60687b71fc4cf",
|
917 |
+
"version_major": 2,
|
918 |
+
"version_minor": 0
|
919 |
+
},
|
920 |
+
"text/plain": [
|
921 |
+
"adapter_config.json: 0%| | 0.00/637 [00:00<?, ?B/s]"
|
922 |
+
]
|
923 |
+
},
|
924 |
+
"metadata": {},
|
925 |
+
"output_type": "display_data"
|
926 |
+
},
|
927 |
+
{
|
928 |
+
"data": {
|
929 |
+
"application/vnd.jupyter.widget-view+json": {
|
930 |
+
"model_id": "1fc5754f41784d1aba00b93551894579",
|
931 |
+
"version_major": 2,
|
932 |
+
"version_minor": 0
|
933 |
+
},
|
934 |
+
"text/plain": [
|
935 |
+
"adapter_model.safetensors: 0%| | 0.00/1.18G [00:00<?, ?B/s]"
|
936 |
+
]
|
937 |
+
},
|
938 |
+
"metadata": {},
|
939 |
+
"output_type": "display_data"
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"name": "stdout",
|
943 |
+
"output_type": "stream",
|
944 |
+
"text": [
|
945 |
+
"context=\"<|begincontext|><|user|>Can you find me a place to eat please?<|system|>Where at? And what kind of cuisine are you craving?<|user|>Somewhere in SF, and I am really craving Thai food at the moment!<|system|>I found a bunch of restaurants, there's actually 10 that you might like in San Francisco, one of them being Baan Thai House & Wine Bar<|user|>How can I reach them? And what's their address?<|system|>You can reach them by phone at 415-379-4505 and visit them at 534 Irving Street<|beginlastuserutterance|>Great, that restaurant sounds good<|endlastuserutterance|><|endcontext|>\" \n",
|
946 |
+
"\n",
|
947 |
+
" target_predicted='<|begintarget|><|begindsts|><|begindst|><|beginintent|> FindRestaurant<|endintent|><|beginbelief|> Restaurants^city->SF~San Francisco|Restaurants^cuisine->Thai|Restaurants^restaurant_name->Baan Thai House & Wine Bar<|endbelief|><|enddst|><|enddsts|><|beginuseraction|> REQUEST->Restaurants^phone_number~|REQUEST->Restaurants^street_address~<|enduseraction|><|beginaction|> INFORM->Restaurants^phone_number~415-379-4505|INFORM->Restaurants^street_address~534 Irving Street<|endaction|><|beginresponse|> The phone number is 415-379-4505 and the address is 534 Irving Street<|endresponse|><|endtarget|>' \n",
|
948 |
+
"\n",
|
949 |
+
" target='<|begintarget|><|begindsts|><|begindst|><|beginintent|>FindRestaurants<|endintent|><|beginbelief|>Restaurants^city->SF~San Francisco|Restaurants^cuisine->Thai|Restaurants^restaurant_name->Baan Thai House & Wine Bar<|endbelief|><|enddst|><|enddsts|><|beginuseraction|>SELECT->Restaurants^~<|enduseraction|><|beginaction|>OFFER_INTENT->Restaurants^intent~ReserveRestaurant<|endaction|><|beginresponse|>Want me to book a table?<|endresponse|><|endtarget|>'\n"
|
950 |
+
]
|
951 |
+
}
|
952 |
+
],
|
953 |
+
"source": [
|
954 |
+
"from peft import PeftModel\n",
|
955 |
+
"\n",
|
956 |
+
"inference_model = AutoModelForCausalLM.from_pretrained(\n",
|
957 |
+
" model_name,\n",
|
958 |
+
" low_cpu_mem_usage=True,\n",
|
959 |
+
" # use_flash_attention_2=True,\n",
|
960 |
+
")\n",
|
961 |
+
"inference_model.resize_token_embeddings(len(tokenizer))\n",
|
962 |
+
"\n",
|
963 |
+
"inference_model = PeftModel.from_pretrained(inference_model, \"smangrul/mistral_lora_clm_with_added_tokens\")\n",
|
964 |
+
"inference_model.to(\"cuda\")\n",
|
965 |
+
"inference_model.eval()\n",
|
966 |
+
"\n",
|
967 |
+
"output_tokens = inference_model.generate(\n",
|
968 |
+
" **batch,\n",
|
969 |
+
" max_new_tokens=256,\n",
|
970 |
+
" do_sample=True,\n",
|
971 |
+
" temperature=0.2,\n",
|
972 |
+
" top_p=0.95,\n",
|
973 |
+
" top_k=50,\n",
|
974 |
+
" eos_token_id=tokenizer.eos_token_id,\n",
|
975 |
+
" pad_token_id=tokenizer.pad_token_id,\n",
|
976 |
+
")\n",
|
977 |
+
"\n",
|
978 |
+
"target_predicted = tokenizer.decode(output_tokens[0], skip_special_tokens=False).split(\"<|endcontext|>\")[1]\n",
|
979 |
+
"print(f\"{context=} \\n\\n {target_predicted=} \\n\\n {target=}\")"
|
980 |
+
]
|
981 |
+
},
|
982 |
+
{
|
983 |
+
"cell_type": "code",
|
984 |
+
"execution_count": null,
|
985 |
+
"id": "fd57f6e8-761f-4e0b-941c-f6973e13b186",
|
986 |
+
"metadata": {},
|
987 |
+
"outputs": [],
|
988 |
+
"source": []
|
989 |
+
}
|
990 |
+
],
|
991 |
+
"metadata": {
|
992 |
+
"kernelspec": {
|
993 |
+
"display_name": "Python 3 (ipykernel)",
|
994 |
+
"language": "python",
|
995 |
+
"name": "python3"
|
996 |
+
},
|
997 |
+
"language_info": {
|
998 |
+
"codemirror_mode": {
|
999 |
+
"name": "ipython",
|
1000 |
+
"version": 3
|
1001 |
+
},
|
1002 |
+
"file_extension": ".py",
|
1003 |
+
"mimetype": "text/x-python",
|
1004 |
+
"name": "python",
|
1005 |
+
"nbconvert_exporter": "python",
|
1006 |
+
"pygments_lexer": "ipython3",
|
1007 |
+
"version": "3.10.13"
|
1008 |
+
}
|
1009 |
+
},
|
1010 |
+
"nbformat": 4,
|
1011 |
+
"nbformat_minor": 5
|
1012 |
+
}
|
prompt_tuning_clm.ipynb
ADDED
@@ -0,0 +1,1229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"id": "71fbfca2",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"from transformers import AutoModelForCausalLM\n",
|
11 |
+
"from peft import get_peft_config, get_peft_model, PromptTuningInit, PromptTuningConfig, TaskType, PeftType\n",
|
12 |
+
"import torch\n",
|
13 |
+
"from datasets import load_dataset\n",
|
14 |
+
"import os\n",
|
15 |
+
"from transformers import AutoTokenizer\n",
|
16 |
+
"from torch.utils.data import DataLoader\n",
|
17 |
+
"from transformers import default_data_collator, get_linear_schedule_with_warmup\n",
|
18 |
+
"from tqdm import tqdm\n",
|
19 |
+
"from datasets import load_dataset\n",
|
20 |
+
"\n",
|
21 |
+
"device = \"cuda\"\n",
|
22 |
+
"model_name_or_path = \"bigscience/bloomz-560m\"\n",
|
23 |
+
"tokenizer_name_or_path = \"bigscience/bloomz-560m\"\n",
|
24 |
+
"peft_config = PromptTuningConfig(\n",
|
25 |
+
" task_type=TaskType.CAUSAL_LM,\n",
|
26 |
+
" prompt_tuning_init=PromptTuningInit.TEXT,\n",
|
27 |
+
" num_virtual_tokens=8,\n",
|
28 |
+
" prompt_tuning_init_text=\"Classify if the tweet is a complaint or not:\",\n",
|
29 |
+
" tokenizer_name_or_path=model_name_or_path,\n",
|
30 |
+
")\n",
|
31 |
+
"\n",
|
32 |
+
"dataset_name = \"twitter_complaints\"\n",
|
33 |
+
"checkpoint_name = f\"{dataset_name}_{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}_v1.pt\".replace(\n",
|
34 |
+
" \"/\", \"_\"\n",
|
35 |
+
")\n",
|
36 |
+
"text_column = \"Tweet text\"\n",
|
37 |
+
"label_column = \"text_label\"\n",
|
38 |
+
"max_length = 64\n",
|
39 |
+
"lr = 3e-2\n",
|
40 |
+
"num_epochs = 50\n",
|
41 |
+
"batch_size = 8"
|
42 |
+
]
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"cell_type": "code",
|
46 |
+
"execution_count": null,
|
47 |
+
"id": "e1a3648b",
|
48 |
+
"metadata": {},
|
49 |
+
"outputs": [],
|
50 |
+
"source": [
|
51 |
+
"from datasets import load_dataset\n",
|
52 |
+
"\n",
|
53 |
+
"dataset = load_dataset(\"ought/raft\", dataset_name)\n",
|
54 |
+
"\n",
|
55 |
+
"classes = [k.replace(\"_\", \" \") for k in dataset[\"train\"].features[\"Label\"].names]\n",
|
56 |
+
"print(classes)\n",
|
57 |
+
"dataset = dataset.map(\n",
|
58 |
+
" lambda x: {\"text_label\": [classes[label] for label in x[\"Label\"]]},\n",
|
59 |
+
" batched=True,\n",
|
60 |
+
" num_proc=1,\n",
|
61 |
+
")\n",
|
62 |
+
"print(dataset)\n",
|
63 |
+
"dataset[\"train\"][0]"
|
64 |
+
]
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"cell_type": "code",
|
68 |
+
"execution_count": null,
|
69 |
+
"id": "fe12d4d3",
|
70 |
+
"metadata": {},
|
71 |
+
"outputs": [],
|
72 |
+
"source": [
|
73 |
+
"# data preprocessing\n",
|
74 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)\n",
|
75 |
+
"if tokenizer.pad_token_id is None:\n",
|
76 |
+
" tokenizer.pad_token_id = tokenizer.eos_token_id\n",
|
77 |
+
"target_max_length = max([len(tokenizer(class_label)[\"input_ids\"]) for class_label in classes])\n",
|
78 |
+
"print(target_max_length)\n",
|
79 |
+
"\n",
|
80 |
+
"\n",
|
81 |
+
"def preprocess_function(examples):\n",
|
82 |
+
" batch_size = len(examples[text_column])\n",
|
83 |
+
" inputs = [f\"{text_column} : {x} Label : \" for x in examples[text_column]]\n",
|
84 |
+
" targets = [str(x) for x in examples[label_column]]\n",
|
85 |
+
" model_inputs = tokenizer(inputs)\n",
|
86 |
+
" labels = tokenizer(targets, add_special_tokens=False) # don't add bos token because we concatenate with inputs\n",
|
87 |
+
" for i in range(batch_size):\n",
|
88 |
+
" sample_input_ids = model_inputs[\"input_ids\"][i]\n",
|
89 |
+
" label_input_ids = labels[\"input_ids\"][i] + [tokenizer.eos_token_id]\n",
|
90 |
+
" # print(i, sample_input_ids, label_input_ids)\n",
|
91 |
+
" model_inputs[\"input_ids\"][i] = sample_input_ids + label_input_ids\n",
|
92 |
+
" labels[\"input_ids\"][i] = [-100] * len(sample_input_ids) + label_input_ids\n",
|
93 |
+
" model_inputs[\"attention_mask\"][i] = [1] * len(model_inputs[\"input_ids\"][i])\n",
|
94 |
+
" # print(model_inputs)\n",
|
95 |
+
" for i in range(batch_size):\n",
|
96 |
+
" sample_input_ids = model_inputs[\"input_ids\"][i]\n",
|
97 |
+
" label_input_ids = labels[\"input_ids\"][i]\n",
|
98 |
+
" model_inputs[\"input_ids\"][i] = [tokenizer.pad_token_id] * (\n",
|
99 |
+
" max_length - len(sample_input_ids)\n",
|
100 |
+
" ) + sample_input_ids\n",
|
101 |
+
" model_inputs[\"attention_mask\"][i] = [0] * (max_length - len(sample_input_ids)) + model_inputs[\n",
|
102 |
+
" \"attention_mask\"\n",
|
103 |
+
" ][i]\n",
|
104 |
+
" labels[\"input_ids\"][i] = [-100] * (max_length - len(sample_input_ids)) + label_input_ids\n",
|
105 |
+
" model_inputs[\"input_ids\"][i] = torch.tensor(model_inputs[\"input_ids\"][i][:max_length])\n",
|
106 |
+
" model_inputs[\"attention_mask\"][i] = torch.tensor(model_inputs[\"attention_mask\"][i][:max_length])\n",
|
107 |
+
" labels[\"input_ids\"][i] = torch.tensor(labels[\"input_ids\"][i][:max_length])\n",
|
108 |
+
" model_inputs[\"labels\"] = labels[\"input_ids\"]\n",
|
109 |
+
" return model_inputs\n",
|
110 |
+
"\n",
|
111 |
+
"\n",
|
112 |
+
"processed_datasets = dataset.map(\n",
|
113 |
+
" preprocess_function,\n",
|
114 |
+
" batched=True,\n",
|
115 |
+
" num_proc=1,\n",
|
116 |
+
" remove_columns=dataset[\"train\"].column_names,\n",
|
117 |
+
" load_from_cache_file=False,\n",
|
118 |
+
" desc=\"Running tokenizer on dataset\",\n",
|
119 |
+
")\n",
|
120 |
+
"\n",
|
121 |
+
"train_dataset = processed_datasets[\"train\"]\n",
|
122 |
+
"eval_dataset = processed_datasets[\"train\"]\n",
|
123 |
+
"\n",
|
124 |
+
"\n",
|
125 |
+
"train_dataloader = DataLoader(\n",
|
126 |
+
" train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True\n",
|
127 |
+
")\n",
|
128 |
+
"eval_dataloader = DataLoader(eval_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True)"
|
129 |
+
]
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"cell_type": "code",
|
133 |
+
"execution_count": null,
|
134 |
+
"id": "641b21fe",
|
135 |
+
"metadata": {},
|
136 |
+
"outputs": [],
|
137 |
+
"source": [
|
138 |
+
"def test_preprocess_function(examples):\n",
|
139 |
+
" batch_size = len(examples[text_column])\n",
|
140 |
+
" inputs = [f\"{text_column} : {x} Label : \" for x in examples[text_column]]\n",
|
141 |
+
" model_inputs = tokenizer(inputs)\n",
|
142 |
+
" # print(model_inputs)\n",
|
143 |
+
" for i in range(batch_size):\n",
|
144 |
+
" sample_input_ids = model_inputs[\"input_ids\"][i]\n",
|
145 |
+
" model_inputs[\"input_ids\"][i] = [tokenizer.pad_token_id] * (\n",
|
146 |
+
" max_length - len(sample_input_ids)\n",
|
147 |
+
" ) + sample_input_ids\n",
|
148 |
+
" model_inputs[\"attention_mask\"][i] = [0] * (max_length - len(sample_input_ids)) + model_inputs[\n",
|
149 |
+
" \"attention_mask\"\n",
|
150 |
+
" ][i]\n",
|
151 |
+
" model_inputs[\"input_ids\"][i] = torch.tensor(model_inputs[\"input_ids\"][i][:max_length])\n",
|
152 |
+
" model_inputs[\"attention_mask\"][i] = torch.tensor(model_inputs[\"attention_mask\"][i][:max_length])\n",
|
153 |
+
" return model_inputs\n",
|
154 |
+
"\n",
|
155 |
+
"\n",
|
156 |
+
"test_dataset = dataset[\"test\"].map(\n",
|
157 |
+
" test_preprocess_function,\n",
|
158 |
+
" batched=True,\n",
|
159 |
+
" num_proc=1,\n",
|
160 |
+
" remove_columns=dataset[\"train\"].column_names,\n",
|
161 |
+
" load_from_cache_file=False,\n",
|
162 |
+
" desc=\"Running tokenizer on dataset\",\n",
|
163 |
+
")\n",
|
164 |
+
"\n",
|
165 |
+
"test_dataloader = DataLoader(test_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True)\n",
|
166 |
+
"next(iter(test_dataloader))"
|
167 |
+
]
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"cell_type": "code",
|
171 |
+
"execution_count": null,
|
172 |
+
"id": "accc5012",
|
173 |
+
"metadata": {},
|
174 |
+
"outputs": [],
|
175 |
+
"source": [
|
176 |
+
"next(iter(train_dataloader))"
|
177 |
+
]
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"cell_type": "code",
|
181 |
+
"execution_count": null,
|
182 |
+
"id": "218df807",
|
183 |
+
"metadata": {},
|
184 |
+
"outputs": [],
|
185 |
+
"source": [
|
186 |
+
"len(test_dataloader)"
|
187 |
+
]
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"cell_type": "code",
|
191 |
+
"execution_count": null,
|
192 |
+
"id": "47d1fedf",
|
193 |
+
"metadata": {},
|
194 |
+
"outputs": [],
|
195 |
+
"source": [
|
196 |
+
"next(iter(test_dataloader))"
|
197 |
+
]
|
198 |
+
},
|
199 |
+
{
|
200 |
+
"cell_type": "code",
|
201 |
+
"execution_count": null,
|
202 |
+
"id": "a773e092",
|
203 |
+
"metadata": {},
|
204 |
+
"outputs": [],
|
205 |
+
"source": [
|
206 |
+
"# creating model\n",
|
207 |
+
"model = AutoModelForCausalLM.from_pretrained(model_name_or_path)\n",
|
208 |
+
"model = get_peft_model(model, peft_config)\n",
|
209 |
+
"model.print_trainable_parameters()"
|
210 |
+
]
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"cell_type": "code",
|
214 |
+
"execution_count": 9,
|
215 |
+
"id": "b2f91568",
|
216 |
+
"metadata": {},
|
217 |
+
"outputs": [],
|
218 |
+
"source": [
|
219 |
+
"# model\n",
|
220 |
+
"# optimizer and lr scheduler\n",
|
221 |
+
"optimizer = torch.optim.AdamW(model.parameters(), lr=lr)\n",
|
222 |
+
"lr_scheduler = get_linear_schedule_with_warmup(\n",
|
223 |
+
" optimizer=optimizer,\n",
|
224 |
+
" num_warmup_steps=0,\n",
|
225 |
+
" num_training_steps=(len(train_dataloader) * num_epochs),\n",
|
226 |
+
")"
|
227 |
+
]
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"cell_type": "code",
|
231 |
+
"execution_count": 10,
|
232 |
+
"id": "e4fb69fc",
|
233 |
+
"metadata": {},
|
234 |
+
"outputs": [
|
235 |
+
{
|
236 |
+
"name": "stderr",
|
237 |
+
"output_type": "stream",
|
238 |
+
"text": [
|
239 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:01<00:00, 5.68it/s]\n",
|
240 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.48it/s]\n"
|
241 |
+
]
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"name": "stdout",
|
245 |
+
"output_type": "stream",
|
246 |
+
"text": [
|
247 |
+
"epoch=0: train_ppl=tensor(2.2720e+13, device='cuda:0') train_epoch_loss=tensor(30.7543, device='cuda:0') eval_ppl=tensor(483597.5625, device='cuda:0') eval_epoch_loss=tensor(13.0890, device='cuda:0')\n"
|
248 |
+
]
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"name": "stderr",
|
252 |
+
"output_type": "stream",
|
253 |
+
"text": [
|
254 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.91it/s]\n",
|
255 |
+
"100%|████████████████��███████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 20.96it/s]\n"
|
256 |
+
]
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"name": "stdout",
|
260 |
+
"output_type": "stream",
|
261 |
+
"text": [
|
262 |
+
"epoch=1: train_ppl=tensor(452658.3750, device='cuda:0') train_epoch_loss=tensor(13.0229, device='cuda:0') eval_ppl=tensor(275088.1875, device='cuda:0') eval_epoch_loss=tensor(12.5248, device='cuda:0')\n"
|
263 |
+
]
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"name": "stderr",
|
267 |
+
"output_type": "stream",
|
268 |
+
"text": [
|
269 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.90it/s]\n",
|
270 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.41it/s]\n"
|
271 |
+
]
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"name": "stdout",
|
275 |
+
"output_type": "stream",
|
276 |
+
"text": [
|
277 |
+
"epoch=2: train_ppl=tensor(199203.3906, device='cuda:0') train_epoch_loss=tensor(12.2021, device='cuda:0') eval_ppl=tensor(143637.0312, device='cuda:0') eval_epoch_loss=tensor(11.8750, device='cuda:0')\n"
|
278 |
+
]
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"name": "stderr",
|
282 |
+
"output_type": "stream",
|
283 |
+
"text": [
|
284 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.92it/s]\n",
|
285 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.31it/s]\n"
|
286 |
+
]
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"name": "stdout",
|
290 |
+
"output_type": "stream",
|
291 |
+
"text": [
|
292 |
+
"epoch=3: train_ppl=tensor(114743.9531, device='cuda:0') train_epoch_loss=tensor(11.6505, device='cuda:0') eval_ppl=tensor(54962., device='cuda:0') eval_epoch_loss=tensor(10.9144, device='cuda:0')\n"
|
293 |
+
]
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"name": "stderr",
|
297 |
+
"output_type": "stream",
|
298 |
+
"text": [
|
299 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.81it/s]\n",
|
300 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.34it/s]\n"
|
301 |
+
]
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"name": "stdout",
|
305 |
+
"output_type": "stream",
|
306 |
+
"text": [
|
307 |
+
"epoch=4: train_ppl=tensor(40786.5977, device='cuda:0') train_epoch_loss=tensor(10.6161, device='cuda:0') eval_ppl=tensor(18342.5430, device='cuda:0') eval_epoch_loss=tensor(9.8170, device='cuda:0')\n"
|
308 |
+
]
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"name": "stderr",
|
312 |
+
"output_type": "stream",
|
313 |
+
"text": [
|
314 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.89it/s]\n",
|
315 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.34it/s]\n"
|
316 |
+
]
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"name": "stdout",
|
320 |
+
"output_type": "stream",
|
321 |
+
"text": [
|
322 |
+
"epoch=5: train_ppl=tensor(14023.0830, device='cuda:0') train_epoch_loss=tensor(9.5485, device='cuda:0') eval_ppl=tensor(6316.8540, device='cuda:0') eval_epoch_loss=tensor(8.7510, device='cuda:0')\n"
|
323 |
+
]
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"name": "stderr",
|
327 |
+
"output_type": "stream",
|
328 |
+
"text": [
|
329 |
+
"100%|██████████████████████████████████████████████████████████████████████████████████████████��█| 7/7 [00:00<00:00, 10.84it/s]\n",
|
330 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.32it/s]\n"
|
331 |
+
]
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"name": "stdout",
|
335 |
+
"output_type": "stream",
|
336 |
+
"text": [
|
337 |
+
"epoch=6: train_ppl=tensor(5635.3262, device='cuda:0') train_epoch_loss=tensor(8.6368, device='cuda:0') eval_ppl=tensor(2476.5776, device='cuda:0') eval_epoch_loss=tensor(7.8146, device='cuda:0')\n"
|
338 |
+
]
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"name": "stderr",
|
342 |
+
"output_type": "stream",
|
343 |
+
"text": [
|
344 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.88it/s]\n",
|
345 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.30it/s]\n"
|
346 |
+
]
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"name": "stdout",
|
350 |
+
"output_type": "stream",
|
351 |
+
"text": [
|
352 |
+
"epoch=7: train_ppl=tensor(1818.4940, device='cuda:0') train_epoch_loss=tensor(7.5058, device='cuda:0') eval_ppl=tensor(934.1146, device='cuda:0') eval_epoch_loss=tensor(6.8396, device='cuda:0')\n"
|
353 |
+
]
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"name": "stderr",
|
357 |
+
"output_type": "stream",
|
358 |
+
"text": [
|
359 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.05it/s]\n",
|
360 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 18.97it/s]\n"
|
361 |
+
]
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"name": "stdout",
|
365 |
+
"output_type": "stream",
|
366 |
+
"text": [
|
367 |
+
"epoch=8: train_ppl=tensor(645.2143, device='cuda:0') train_epoch_loss=tensor(6.4696, device='cuda:0') eval_ppl=tensor(361.9093, device='cuda:0') eval_epoch_loss=tensor(5.8914, device='cuda:0')\n"
|
368 |
+
]
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"name": "stderr",
|
372 |
+
"output_type": "stream",
|
373 |
+
"text": [
|
374 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 9.67it/s]\n",
|
375 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 19.12it/s]\n"
|
376 |
+
]
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"name": "stdout",
|
380 |
+
"output_type": "stream",
|
381 |
+
"text": [
|
382 |
+
"epoch=9: train_ppl=tensor(293.8047, device='cuda:0') train_epoch_loss=tensor(5.6829, device='cuda:0') eval_ppl=tensor(215.8185, device='cuda:0') eval_epoch_loss=tensor(5.3744, device='cuda:0')\n"
|
383 |
+
]
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"name": "stderr",
|
387 |
+
"output_type": "stream",
|
388 |
+
"text": [
|
389 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.54it/s]\n",
|
390 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 20.83it/s]\n"
|
391 |
+
]
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"name": "stdout",
|
395 |
+
"output_type": "stream",
|
396 |
+
"text": [
|
397 |
+
"epoch=10: train_ppl=tensor(191.2377, device='cuda:0') train_epoch_loss=tensor(5.2535, device='cuda:0') eval_ppl=tensor(177.1512, device='cuda:0') eval_epoch_loss=tensor(5.1770, device='cuda:0')\n"
|
398 |
+
]
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"name": "stderr",
|
402 |
+
"output_type": "stream",
|
403 |
+
"text": [
|
404 |
+
"100%|████████████████████████████████████████████████████████████████���███████████████████████████| 7/7 [00:00<00:00, 10.02it/s]\n",
|
405 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 18.98it/s]\n"
|
406 |
+
]
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"name": "stdout",
|
410 |
+
"output_type": "stream",
|
411 |
+
"text": [
|
412 |
+
"epoch=11: train_ppl=tensor(153.6052, device='cuda:0') train_epoch_loss=tensor(5.0344, device='cuda:0') eval_ppl=tensor(126.6154, device='cuda:0') eval_epoch_loss=tensor(4.8412, device='cuda:0')\n"
|
413 |
+
]
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"name": "stderr",
|
417 |
+
"output_type": "stream",
|
418 |
+
"text": [
|
419 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 9.54it/s]\n",
|
420 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 18.78it/s]\n"
|
421 |
+
]
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"name": "stdout",
|
425 |
+
"output_type": "stream",
|
426 |
+
"text": [
|
427 |
+
"epoch=12: train_ppl=tensor(122.8925, device='cuda:0') train_epoch_loss=tensor(4.8113, device='cuda:0') eval_ppl=tensor(97.3331, device='cuda:0') eval_epoch_loss=tensor(4.5781, device='cuda:0')\n"
|
428 |
+
]
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"name": "stderr",
|
432 |
+
"output_type": "stream",
|
433 |
+
"text": [
|
434 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 9.66it/s]\n",
|
435 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 19.72it/s]\n"
|
436 |
+
]
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"name": "stdout",
|
440 |
+
"output_type": "stream",
|
441 |
+
"text": [
|
442 |
+
"epoch=13: train_ppl=tensor(84.8845, device='cuda:0') train_epoch_loss=tensor(4.4413, device='cuda:0') eval_ppl=tensor(70.3213, device='cuda:0') eval_epoch_loss=tensor(4.2531, device='cuda:0')\n"
|
443 |
+
]
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"name": "stderr",
|
447 |
+
"output_type": "stream",
|
448 |
+
"text": [
|
449 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:01<00:00, 6.73it/s]\n",
|
450 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 16.07it/s]\n"
|
451 |
+
]
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"name": "stdout",
|
455 |
+
"output_type": "stream",
|
456 |
+
"text": [
|
457 |
+
"epoch=14: train_ppl=tensor(64.6705, device='cuda:0') train_epoch_loss=tensor(4.1693, device='cuda:0') eval_ppl=tensor(50.4688, device='cuda:0') eval_epoch_loss=tensor(3.9214, device='cuda:0')\n"
|
458 |
+
]
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"name": "stderr",
|
462 |
+
"output_type": "stream",
|
463 |
+
"text": [
|
464 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 8.41it/s]\n",
|
465 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 15.63it/s]\n"
|
466 |
+
]
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"name": "stdout",
|
470 |
+
"output_type": "stream",
|
471 |
+
"text": [
|
472 |
+
"epoch=15: train_ppl=tensor(44.2937, device='cuda:0') train_epoch_loss=tensor(3.7908, device='cuda:0') eval_ppl=tensor(34.8210, device='cuda:0') eval_epoch_loss=tensor(3.5502, device='cuda:0')\n"
|
473 |
+
]
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"name": "stderr",
|
477 |
+
"output_type": "stream",
|
478 |
+
"text": [
|
479 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 8.31it/s]\n",
|
480 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 15.67it/s]\n"
|
481 |
+
]
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"name": "stdout",
|
485 |
+
"output_type": "stream",
|
486 |
+
"text": [
|
487 |
+
"epoch=16: train_ppl=tensor(30.0995, device='cuda:0') train_epoch_loss=tensor(3.4045, device='cuda:0') eval_ppl=tensor(24.7703, device='cuda:0') eval_epoch_loss=tensor(3.2096, device='cuda:0')\n"
|
488 |
+
]
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"name": "stderr",
|
492 |
+
"output_type": "stream",
|
493 |
+
"text": [
|
494 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 8.31it/s]\n",
|
495 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 15.59it/s]\n"
|
496 |
+
]
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"name": "stdout",
|
500 |
+
"output_type": "stream",
|
501 |
+
"text": [
|
502 |
+
"epoch=17: train_ppl=tensor(23.3086, device='cuda:0') train_epoch_loss=tensor(3.1488, device='cuda:0') eval_ppl=tensor(20.8131, device='cuda:0') eval_epoch_loss=tensor(3.0356, device='cuda:0')\n"
|
503 |
+
]
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"name": "stderr",
|
507 |
+
"output_type": "stream",
|
508 |
+
"text": [
|
509 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 8.29it/s]\n",
|
510 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 16.04it/s]\n"
|
511 |
+
]
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"name": "stdout",
|
515 |
+
"output_type": "stream",
|
516 |
+
"text": [
|
517 |
+
"epoch=18: train_ppl=tensor(16.4479, device='cuda:0') train_epoch_loss=tensor(2.8002, device='cuda:0') eval_ppl=tensor(12.0876, device='cuda:0') eval_epoch_loss=tensor(2.4922, device='cuda:0')\n"
|
518 |
+
]
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"name": "stderr",
|
522 |
+
"output_type": "stream",
|
523 |
+
"text": [
|
524 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 8.37it/s]\n",
|
525 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 15.37it/s]\n"
|
526 |
+
]
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"name": "stdout",
|
530 |
+
"output_type": "stream",
|
531 |
+
"text": [
|
532 |
+
"epoch=19: train_ppl=tensor(11.1977, device='cuda:0') train_epoch_loss=tensor(2.4157, device='cuda:0') eval_ppl=tensor(9.0399, device='cuda:0') eval_epoch_loss=tensor(2.2016, device='cuda:0')\n"
|
533 |
+
]
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"name": "stderr",
|
537 |
+
"output_type": "stream",
|
538 |
+
"text": [
|
539 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 8.23it/s]\n",
|
540 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 17.29it/s]\n"
|
541 |
+
]
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"name": "stdout",
|
545 |
+
"output_type": "stream",
|
546 |
+
"text": [
|
547 |
+
"epoch=20: train_ppl=tensor(8.1847, device='cuda:0') train_epoch_loss=tensor(2.1023, device='cuda:0') eval_ppl=tensor(6.7486, device='cuda:0') eval_epoch_loss=tensor(1.9093, device='cuda:0')\n"
|
548 |
+
]
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"name": "stderr",
|
552 |
+
"output_type": "stream",
|
553 |
+
"text": [
|
554 |
+
"100%|█████████████████��██████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 8.30it/s]\n",
|
555 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 15.58it/s]\n"
|
556 |
+
]
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"name": "stdout",
|
560 |
+
"output_type": "stream",
|
561 |
+
"text": [
|
562 |
+
"epoch=21: train_ppl=tensor(6.1145, device='cuda:0') train_epoch_loss=tensor(1.8107, device='cuda:0') eval_ppl=tensor(5.5931, device='cuda:0') eval_epoch_loss=tensor(1.7215, device='cuda:0')\n"
|
563 |
+
]
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"name": "stderr",
|
567 |
+
"output_type": "stream",
|
568 |
+
"text": [
|
569 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 8.34it/s]\n",
|
570 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.36it/s]\n"
|
571 |
+
]
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"name": "stdout",
|
575 |
+
"output_type": "stream",
|
576 |
+
"text": [
|
577 |
+
"epoch=22: train_ppl=tensor(5.2963, device='cuda:0') train_epoch_loss=tensor(1.6670, device='cuda:0') eval_ppl=tensor(5.0573, device='cuda:0') eval_epoch_loss=tensor(1.6208, device='cuda:0')\n"
|
578 |
+
]
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"name": "stderr",
|
582 |
+
"output_type": "stream",
|
583 |
+
"text": [
|
584 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.84it/s]\n",
|
585 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.26it/s]\n"
|
586 |
+
]
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"name": "stdout",
|
590 |
+
"output_type": "stream",
|
591 |
+
"text": [
|
592 |
+
"epoch=23: train_ppl=tensor(4.7485, device='cuda:0') train_epoch_loss=tensor(1.5578, device='cuda:0') eval_ppl=tensor(3.6277, device='cuda:0') eval_epoch_loss=tensor(1.2886, device='cuda:0')\n"
|
593 |
+
]
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"name": "stderr",
|
597 |
+
"output_type": "stream",
|
598 |
+
"text": [
|
599 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.84it/s]\n",
|
600 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.31it/s]\n"
|
601 |
+
]
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"name": "stdout",
|
605 |
+
"output_type": "stream",
|
606 |
+
"text": [
|
607 |
+
"epoch=24: train_ppl=tensor(3.4080, device='cuda:0') train_epoch_loss=tensor(1.2261, device='cuda:0') eval_ppl=tensor(3.0467, device='cuda:0') eval_epoch_loss=tensor(1.1141, device='cuda:0')\n"
|
608 |
+
]
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"name": "stderr",
|
612 |
+
"output_type": "stream",
|
613 |
+
"text": [
|
614 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.88it/s]\n",
|
615 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.25it/s]\n"
|
616 |
+
]
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"name": "stdout",
|
620 |
+
"output_type": "stream",
|
621 |
+
"text": [
|
622 |
+
"epoch=25: train_ppl=tensor(3.3052, device='cuda:0') train_epoch_loss=tensor(1.1955, device='cuda:0') eval_ppl=tensor(2.7784, device='cuda:0') eval_epoch_loss=tensor(1.0219, device='cuda:0')\n"
|
623 |
+
]
|
624 |
+
},
|
625 |
+
{
|
626 |
+
"name": "stderr",
|
627 |
+
"output_type": "stream",
|
628 |
+
"text": [
|
629 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.86it/s]\n",
|
630 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.22it/s]\n"
|
631 |
+
]
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"name": "stdout",
|
635 |
+
"output_type": "stream",
|
636 |
+
"text": [
|
637 |
+
"epoch=26: train_ppl=tensor(2.9487, device='cuda:0') train_epoch_loss=tensor(1.0814, device='cuda:0') eval_ppl=tensor(2.9471, device='cuda:0') eval_epoch_loss=tensor(1.0808, device='cuda:0')\n"
|
638 |
+
]
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"name": "stderr",
|
642 |
+
"output_type": "stream",
|
643 |
+
"text": [
|
644 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.85it/s]\n",
|
645 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.25it/s]\n"
|
646 |
+
]
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"name": "stdout",
|
650 |
+
"output_type": "stream",
|
651 |
+
"text": [
|
652 |
+
"epoch=27: train_ppl=tensor(2.8738, device='cuda:0') train_epoch_loss=tensor(1.0556, device='cuda:0') eval_ppl=tensor(2.5801, device='cuda:0') eval_epoch_loss=tensor(0.9478, device='cuda:0')\n"
|
653 |
+
]
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"name": "stderr",
|
657 |
+
"output_type": "stream",
|
658 |
+
"text": [
|
659 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.84it/s]\n",
|
660 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.28it/s]\n"
|
661 |
+
]
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"name": "stdout",
|
665 |
+
"output_type": "stream",
|
666 |
+
"text": [
|
667 |
+
"epoch=28: train_ppl=tensor(2.3241, device='cuda:0') train_epoch_loss=tensor(0.8433, device='cuda:0') eval_ppl=tensor(2.2198, device='cuda:0') eval_epoch_loss=tensor(0.7974, device='cuda:0')\n"
|
668 |
+
]
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"name": "stderr",
|
672 |
+
"output_type": "stream",
|
673 |
+
"text": [
|
674 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.84it/s]\n",
|
675 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 20.89it/s]\n"
|
676 |
+
]
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"name": "stdout",
|
680 |
+
"output_type": "stream",
|
681 |
+
"text": [
|
682 |
+
"epoch=29: train_ppl=tensor(2.0376, device='cuda:0') train_epoch_loss=tensor(0.7118, device='cuda:0') eval_ppl=tensor(1.8572, device='cuda:0') eval_epoch_loss=tensor(0.6191, device='cuda:0')\n"
|
683 |
+
]
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"name": "stderr",
|
687 |
+
"output_type": "stream",
|
688 |
+
"text": [
|
689 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 9.76it/s]\n",
|
690 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 18.83it/s]\n"
|
691 |
+
]
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"name": "stdout",
|
695 |
+
"output_type": "stream",
|
696 |
+
"text": [
|
697 |
+
"epoch=30: train_ppl=tensor(1.8301, device='cuda:0') train_epoch_loss=tensor(0.6044, device='cuda:0') eval_ppl=tensor(1.8864, device='cuda:0') eval_epoch_loss=tensor(0.6347, device='cuda:0')\n"
|
698 |
+
]
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"name": "stderr",
|
702 |
+
"output_type": "stream",
|
703 |
+
"text": [
|
704 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 9.80it/s]\n",
|
705 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 19.81it/s]\n"
|
706 |
+
]
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"name": "stdout",
|
710 |
+
"output_type": "stream",
|
711 |
+
"text": [
|
712 |
+
"epoch=31: train_ppl=tensor(1.7301, device='cuda:0') train_epoch_loss=tensor(0.5482, device='cuda:0') eval_ppl=tensor(1.6340, device='cuda:0') eval_epoch_loss=tensor(0.4910, device='cuda:0')\n"
|
713 |
+
]
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"name": "stderr",
|
717 |
+
"output_type": "stream",
|
718 |
+
"text": [
|
719 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.60it/s]\n",
|
720 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 19.11it/s]\n"
|
721 |
+
]
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"name": "stdout",
|
725 |
+
"output_type": "stream",
|
726 |
+
"text": [
|
727 |
+
"epoch=32: train_ppl=tensor(1.5842, device='cuda:0') train_epoch_loss=tensor(0.4601, device='cuda:0') eval_ppl=tensor(1.6179, device='cuda:0') eval_epoch_loss=tensor(0.4811, device='cuda:0')\n"
|
728 |
+
]
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"name": "stderr",
|
732 |
+
"output_type": "stream",
|
733 |
+
"text": [
|
734 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.11it/s]\n",
|
735 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 18.35it/s]\n"
|
736 |
+
]
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"name": "stdout",
|
740 |
+
"output_type": "stream",
|
741 |
+
"text": [
|
742 |
+
"epoch=33: train_ppl=tensor(1.5193, device='cuda:0') train_epoch_loss=tensor(0.4183, device='cuda:0') eval_ppl=tensor(1.5543, device='cuda:0') eval_epoch_loss=tensor(0.4410, device='cuda:0')\n"
|
743 |
+
]
|
744 |
+
},
|
745 |
+
{
|
746 |
+
"name": "stderr",
|
747 |
+
"output_type": "stream",
|
748 |
+
"text": [
|
749 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 9.59it/s]\n",
|
750 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 18.60it/s]\n"
|
751 |
+
]
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"name": "stdout",
|
755 |
+
"output_type": "stream",
|
756 |
+
"text": [
|
757 |
+
"epoch=34: train_ppl=tensor(1.5402, device='cuda:0') train_epoch_loss=tensor(0.4319, device='cuda:0') eval_ppl=tensor(1.4924, device='cuda:0') eval_epoch_loss=tensor(0.4004, device='cuda:0')\n"
|
758 |
+
]
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"name": "stderr",
|
762 |
+
"output_type": "stream",
|
763 |
+
"text": [
|
764 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 9.80it/s]\n",
|
765 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 19.63it/s]\n"
|
766 |
+
]
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"name": "stdout",
|
770 |
+
"output_type": "stream",
|
771 |
+
"text": [
|
772 |
+
"epoch=35: train_ppl=tensor(1.4410, device='cuda:0') train_epoch_loss=tensor(0.3654, device='cuda:0') eval_ppl=tensor(1.3888, device='cuda:0') eval_epoch_loss=tensor(0.3284, device='cuda:0')\n"
|
773 |
+
]
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"name": "stderr",
|
777 |
+
"output_type": "stream",
|
778 |
+
"text": [
|
779 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:01<00:00, 6.60it/s]\n",
|
780 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 15.36it/s]\n"
|
781 |
+
]
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"name": "stdout",
|
785 |
+
"output_type": "stream",
|
786 |
+
"text": [
|
787 |
+
"epoch=36: train_ppl=tensor(1.3675, device='cuda:0') train_epoch_loss=tensor(0.3130, device='cuda:0') eval_ppl=tensor(1.4001, device='cuda:0') eval_epoch_loss=tensor(0.3366, device='cuda:0')\n"
|
788 |
+
]
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"name": "stderr",
|
792 |
+
"output_type": "stream",
|
793 |
+
"text": [
|
794 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 8.40it/s]\n",
|
795 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 15.58it/s]\n"
|
796 |
+
]
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"name": "stdout",
|
800 |
+
"output_type": "stream",
|
801 |
+
"text": [
|
802 |
+
"epoch=37: train_ppl=tensor(1.4197, device='cuda:0') train_epoch_loss=tensor(0.3505, device='cuda:0') eval_ppl=tensor(1.3214, device='cuda:0') eval_epoch_loss=tensor(0.2787, device='cuda:0')\n"
|
803 |
+
]
|
804 |
+
},
|
805 |
+
{
|
806 |
+
"name": "stderr",
|
807 |
+
"output_type": "stream",
|
808 |
+
"text": [
|
809 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 8.27it/s]\n",
|
810 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 15.56it/s]\n"
|
811 |
+
]
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"name": "stdout",
|
815 |
+
"output_type": "stream",
|
816 |
+
"text": [
|
817 |
+
"epoch=38: train_ppl=tensor(1.3855, device='cuda:0') train_epoch_loss=tensor(0.3261, device='cuda:0') eval_ppl=tensor(1.3501, device='cuda:0') eval_epoch_loss=tensor(0.3001, device='cuda:0')\n"
|
818 |
+
]
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"name": "stderr",
|
822 |
+
"output_type": "stream",
|
823 |
+
"text": [
|
824 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 8.25it/s]\n",
|
825 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 15.57it/s]\n"
|
826 |
+
]
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"name": "stdout",
|
830 |
+
"output_type": "stream",
|
831 |
+
"text": [
|
832 |
+
"epoch=39: train_ppl=tensor(1.3643, device='cuda:0') train_epoch_loss=tensor(0.3107, device='cuda:0') eval_ppl=tensor(1.3549, device='cuda:0') eval_epoch_loss=tensor(0.3037, device='cuda:0')\n"
|
833 |
+
]
|
834 |
+
},
|
835 |
+
{
|
836 |
+
"name": "stderr",
|
837 |
+
"output_type": "stream",
|
838 |
+
"text": [
|
839 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 8.28it/s]\n",
|
840 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 15.41it/s]\n"
|
841 |
+
]
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"name": "stdout",
|
845 |
+
"output_type": "stream",
|
846 |
+
"text": [
|
847 |
+
"epoch=40: train_ppl=tensor(1.3093, device='cuda:0') train_epoch_loss=tensor(0.2695, device='cuda:0') eval_ppl=tensor(1.3233, device='cuda:0') eval_epoch_loss=tensor(0.2801, device='cuda:0')\n"
|
848 |
+
]
|
849 |
+
},
|
850 |
+
{
|
851 |
+
"name": "stderr",
|
852 |
+
"output_type": "stream",
|
853 |
+
"text": [
|
854 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 8.24it/s]\n",
|
855 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 15.51it/s]\n"
|
856 |
+
]
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"name": "stdout",
|
860 |
+
"output_type": "stream",
|
861 |
+
"text": [
|
862 |
+
"epoch=41: train_ppl=tensor(1.3108, device='cuda:0') train_epoch_loss=tensor(0.2706, device='cuda:0') eval_ppl=tensor(1.3440, device='cuda:0') eval_epoch_loss=tensor(0.2957, device='cuda:0')\n"
|
863 |
+
]
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"name": "stderr",
|
867 |
+
"output_type": "stream",
|
868 |
+
"text": [
|
869 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 8.78it/s]\n",
|
870 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 15.61it/s]\n"
|
871 |
+
]
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"name": "stdout",
|
875 |
+
"output_type": "stream",
|
876 |
+
"text": [
|
877 |
+
"epoch=42: train_ppl=tensor(1.2944, device='cuda:0') train_epoch_loss=tensor(0.2581, device='cuda:0') eval_ppl=tensor(1.2711, device='cuda:0') eval_epoch_loss=tensor(0.2399, device='cuda:0')\n"
|
878 |
+
]
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"name": "stderr",
|
882 |
+
"output_type": "stream",
|
883 |
+
"text": [
|
884 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 8.29it/s]\n",
|
885 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 15.56it/s]\n"
|
886 |
+
]
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"name": "stdout",
|
890 |
+
"output_type": "stream",
|
891 |
+
"text": [
|
892 |
+
"epoch=43: train_ppl=tensor(1.2616, device='cuda:0') train_epoch_loss=tensor(0.2323, device='cuda:0') eval_ppl=tensor(1.2449, device='cuda:0') eval_epoch_loss=tensor(0.2190, device='cuda:0')\n"
|
893 |
+
]
|
894 |
+
},
|
895 |
+
{
|
896 |
+
"name": "stderr",
|
897 |
+
"output_type": "stream",
|
898 |
+
"text": [
|
899 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.85it/s]\n",
|
900 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.27it/s]\n"
|
901 |
+
]
|
902 |
+
},
|
903 |
+
{
|
904 |
+
"name": "stdout",
|
905 |
+
"output_type": "stream",
|
906 |
+
"text": [
|
907 |
+
"epoch=44: train_ppl=tensor(1.2478, device='cuda:0') train_epoch_loss=tensor(0.2214, device='cuda:0') eval_ppl=tensor(1.2202, device='cuda:0') eval_epoch_loss=tensor(0.1990, device='cuda:0')\n"
|
908 |
+
]
|
909 |
+
},
|
910 |
+
{
|
911 |
+
"name": "stderr",
|
912 |
+
"output_type": "stream",
|
913 |
+
"text": [
|
914 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.85it/s]\n",
|
915 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.31it/s]\n"
|
916 |
+
]
|
917 |
+
},
|
918 |
+
{
|
919 |
+
"name": "stdout",
|
920 |
+
"output_type": "stream",
|
921 |
+
"text": [
|
922 |
+
"epoch=45: train_ppl=tensor(1.2350, device='cuda:0') train_epoch_loss=tensor(0.2111, device='cuda:0') eval_ppl=tensor(1.2180, device='cuda:0') eval_epoch_loss=tensor(0.1972, device='cuda:0')\n"
|
923 |
+
]
|
924 |
+
},
|
925 |
+
{
|
926 |
+
"name": "stderr",
|
927 |
+
"output_type": "stream",
|
928 |
+
"text": [
|
929 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.86it/s]\n",
|
930 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.33it/s]\n"
|
931 |
+
]
|
932 |
+
},
|
933 |
+
{
|
934 |
+
"name": "stdout",
|
935 |
+
"output_type": "stream",
|
936 |
+
"text": [
|
937 |
+
"epoch=46: train_ppl=tensor(1.2277, device='cuda:0') train_epoch_loss=tensor(0.2052, device='cuda:0') eval_ppl=tensor(1.2077, device='cuda:0') eval_epoch_loss=tensor(0.1887, device='cuda:0')\n"
|
938 |
+
]
|
939 |
+
},
|
940 |
+
{
|
941 |
+
"name": "stderr",
|
942 |
+
"output_type": "stream",
|
943 |
+
"text": [
|
944 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.87it/s]\n",
|
945 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.35it/s]\n"
|
946 |
+
]
|
947 |
+
},
|
948 |
+
{
|
949 |
+
"name": "stdout",
|
950 |
+
"output_type": "stream",
|
951 |
+
"text": [
|
952 |
+
"epoch=47: train_ppl=tensor(1.2037, device='cuda:0') train_epoch_loss=tensor(0.1854, device='cuda:0') eval_ppl=tensor(1.2041, device='cuda:0') eval_epoch_loss=tensor(0.1857, device='cuda:0')\n"
|
953 |
+
]
|
954 |
+
},
|
955 |
+
{
|
956 |
+
"name": "stderr",
|
957 |
+
"output_type": "stream",
|
958 |
+
"text": [
|
959 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.83it/s]\n",
|
960 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.29it/s]\n"
|
961 |
+
]
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"name": "stdout",
|
965 |
+
"output_type": "stream",
|
966 |
+
"text": [
|
967 |
+
"epoch=48: train_ppl=tensor(1.2026, device='cuda:0') train_epoch_loss=tensor(0.1845, device='cuda:0') eval_ppl=tensor(1.1982, device='cuda:0') eval_epoch_loss=tensor(0.1808, device='cuda:0')\n"
|
968 |
+
]
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"name": "stderr",
|
972 |
+
"output_type": "stream",
|
973 |
+
"text": [
|
974 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.86it/s]\n",
|
975 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.35it/s]"
|
976 |
+
]
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"name": "stdout",
|
980 |
+
"output_type": "stream",
|
981 |
+
"text": [
|
982 |
+
"epoch=49: train_ppl=tensor(1.2005, device='cuda:0') train_epoch_loss=tensor(0.1827, device='cuda:0') eval_ppl=tensor(1.1968, device='cuda:0') eval_epoch_loss=tensor(0.1796, device='cuda:0')\n"
|
983 |
+
]
|
984 |
+
},
|
985 |
+
{
|
986 |
+
"name": "stderr",
|
987 |
+
"output_type": "stream",
|
988 |
+
"text": [
|
989 |
+
"\n"
|
990 |
+
]
|
991 |
+
}
|
992 |
+
],
|
993 |
+
"source": [
|
994 |
+
"# training and evaluation\n",
|
995 |
+
"model = model.to(device)\n",
|
996 |
+
"\n",
|
997 |
+
"for epoch in range(num_epochs):\n",
|
998 |
+
" model.train()\n",
|
999 |
+
" total_loss = 0\n",
|
1000 |
+
" for step, batch in enumerate(tqdm(train_dataloader)):\n",
|
1001 |
+
" batch = {k: v.to(device) for k, v in batch.items()}\n",
|
1002 |
+
" # print(batch)\n",
|
1003 |
+
" # print(batch[\"input_ids\"].shape)\n",
|
1004 |
+
" outputs = model(**batch)\n",
|
1005 |
+
" loss = outputs.loss\n",
|
1006 |
+
" total_loss += loss.detach().float()\n",
|
1007 |
+
" loss.backward()\n",
|
1008 |
+
" optimizer.step()\n",
|
1009 |
+
" lr_scheduler.step()\n",
|
1010 |
+
" optimizer.zero_grad()\n",
|
1011 |
+
"\n",
|
1012 |
+
" model.eval()\n",
|
1013 |
+
" eval_loss = 0\n",
|
1014 |
+
" eval_preds = []\n",
|
1015 |
+
" for step, batch in enumerate(tqdm(eval_dataloader)):\n",
|
1016 |
+
" batch = {k: v.to(device) for k, v in batch.items()}\n",
|
1017 |
+
" with torch.no_grad():\n",
|
1018 |
+
" outputs = model(**batch)\n",
|
1019 |
+
" loss = outputs.loss\n",
|
1020 |
+
" eval_loss += loss.detach().float()\n",
|
1021 |
+
" eval_preds.extend(\n",
|
1022 |
+
" tokenizer.batch_decode(torch.argmax(outputs.logits, -1).detach().cpu().numpy(), skip_special_tokens=True)\n",
|
1023 |
+
" )\n",
|
1024 |
+
"\n",
|
1025 |
+
" eval_epoch_loss = eval_loss / len(eval_dataloader)\n",
|
1026 |
+
" eval_ppl = torch.exp(eval_epoch_loss)\n",
|
1027 |
+
" train_epoch_loss = total_loss / len(train_dataloader)\n",
|
1028 |
+
" train_ppl = torch.exp(train_epoch_loss)\n",
|
1029 |
+
" print(f\"{epoch=}: {train_ppl=} {train_epoch_loss=} {eval_ppl=} {eval_epoch_loss=}\")"
|
1030 |
+
]
|
1031 |
+
},
|
1032 |
+
{
|
1033 |
+
"cell_type": "code",
|
1034 |
+
"execution_count": 29,
|
1035 |
+
"id": "53752a7b",
|
1036 |
+
"metadata": {},
|
1037 |
+
"outputs": [
|
1038 |
+
{
|
1039 |
+
"name": "stdout",
|
1040 |
+
"output_type": "stream",
|
1041 |
+
"text": [
|
1042 |
+
"@TommyHilfiger Dramatic shopping exp. ordered 6 jeans same size (30/32) 2 fits / 2 too large / 2 too slim : same brand > different sizing\n",
|
1043 |
+
"{'input_ids': tensor([[227985, 5484, 915, 2566, 226154, 126015, 5385, 259, 239364,\n",
|
1044 |
+
" 3396, 70823, 5853, 17, 57247, 1231, 191040, 5025, 7869,\n",
|
1045 |
+
" 375, 2324, 149349, 12, 415, 122321, 897, 415, 10136,\n",
|
1046 |
+
" 10021, 897, 415, 10136, 6497, 381, 915, 5025, 51950,\n",
|
1047 |
+
" 66869, 5955, 272, 20311, 77658, 915, 210]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
|
1048 |
+
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])}\n",
|
1049 |
+
"tensor([[227985, 5484, 915, 2566, 226154, 126015, 5385, 259, 239364,\n",
|
1050 |
+
" 3396, 70823, 5853, 17, 57247, 1231, 191040, 5025, 7869,\n",
|
1051 |
+
" 375, 2324, 149349, 12, 415, 122321, 897, 415, 10136,\n",
|
1052 |
+
" 10021, 897, 415, 10136, 6497, 381, 915, 5025, 51950,\n",
|
1053 |
+
" 66869, 5955, 272, 20311, 77658, 915, 210, 16449, 5952,\n",
|
1054 |
+
" 3]], device='cuda:0')\n",
|
1055 |
+
"['Tweet text : @TommyHilfiger Dramatic shopping exp. ordered 6 jeans same size (30/32) 2 fits / 2 too large / 2 too slim : same brand > different sizing Label : complaint']\n"
|
1056 |
+
]
|
1057 |
+
}
|
1058 |
+
],
|
1059 |
+
"source": [
|
1060 |
+
"model.eval()\n",
|
1061 |
+
"i = 33\n",
|
1062 |
+
"inputs = tokenizer(f'{text_column} : {dataset[\"test\"][i][\"Tweet text\"]} Label : ', return_tensors=\"pt\")\n",
|
1063 |
+
"print(dataset[\"test\"][i][\"Tweet text\"])\n",
|
1064 |
+
"print(inputs)\n",
|
1065 |
+
"\n",
|
1066 |
+
"with torch.no_grad():\n",
|
1067 |
+
" inputs = {k: v.to(device) for k, v in inputs.items()}\n",
|
1068 |
+
" outputs = model.generate(\n",
|
1069 |
+
" input_ids=inputs[\"input_ids\"], attention_mask=inputs[\"attention_mask\"], max_new_tokens=10, eos_token_id=3\n",
|
1070 |
+
" )\n",
|
1071 |
+
" print(outputs)\n",
|
1072 |
+
" print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))"
|
1073 |
+
]
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"cell_type": "markdown",
|
1077 |
+
"id": "c8f35152",
|
1078 |
+
"metadata": {},
|
1079 |
+
"source": [
|
1080 |
+
"You can push model to hub or save model locally. \n",
|
1081 |
+
"\n",
|
1082 |
+
"- Option1: Pushing the model to Hugging Face Hub\n",
|
1083 |
+
"```python\n",
|
1084 |
+
"model.push_to_hub(\n",
|
1085 |
+
" f\"{dataset_name}_{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}\".replace(\"/\", \"_\"),\n",
|
1086 |
+
" token = \"hf_...\"\n",
|
1087 |
+
")\n",
|
1088 |
+
"```\n",
|
1089 |
+
"token (`bool` or `str`, *optional*):\n",
|
1090 |
+
" `token` is to be used for HTTP Bearer authorization when accessing remote files. If `True`, will use the token generated\n",
|
1091 |
+
" when running `huggingface-cli login` (stored in `~/.huggingface`). Will default to `True` if `repo_url`\n",
|
1092 |
+
" is not specified.\n",
|
1093 |
+
" Or you can get your token from https://huggingface.co/settings/token\n",
|
1094 |
+
"```\n",
|
1095 |
+
"- Or save model locally\n",
|
1096 |
+
"```python\n",
|
1097 |
+
"peft_model_id = f\"{dataset_name}_{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}\".replace(\"/\", \"_\")\n",
|
1098 |
+
"model.save_pretrained(peft_model_id)\n",
|
1099 |
+
"```"
|
1100 |
+
]
|
1101 |
+
},
|
1102 |
+
{
|
1103 |
+
"cell_type": "code",
|
1104 |
+
"execution_count": 12,
|
1105 |
+
"id": "d8ba1f8c",
|
1106 |
+
"metadata": {},
|
1107 |
+
"outputs": [],
|
1108 |
+
"source": [
|
1109 |
+
"# saving model\n",
|
1110 |
+
"peft_model_id = f\"{dataset_name}_{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}\".replace(\n",
|
1111 |
+
" \"/\", \"_\"\n",
|
1112 |
+
")\n",
|
1113 |
+
"model.save_pretrained(peft_model_id)"
|
1114 |
+
]
|
1115 |
+
},
|
1116 |
+
{
|
1117 |
+
"cell_type": "code",
|
1118 |
+
"execution_count": 13,
|
1119 |
+
"id": "4928c7f1",
|
1120 |
+
"metadata": {},
|
1121 |
+
"outputs": [
|
1122 |
+
{
|
1123 |
+
"name": "stdout",
|
1124 |
+
"output_type": "stream",
|
1125 |
+
"text": [
|
1126 |
+
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
|
1127 |
+
"To disable this warning, you can either:\n",
|
1128 |
+
"\t- Avoid using `tokenizers` before the fork if possible\n",
|
1129 |
+
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n",
|
1130 |
+
"36K\tbigscience/bloomz-560m_PROMPT_TUNING_CAUSAL_LM/adapter_model.bin\n"
|
1131 |
+
]
|
1132 |
+
}
|
1133 |
+
],
|
1134 |
+
"source": [
|
1135 |
+
"ckpt = f\"{peft_model_id}/adapter_model.bin\"\n",
|
1136 |
+
"!du -h $ckpt"
|
1137 |
+
]
|
1138 |
+
},
|
1139 |
+
{
|
1140 |
+
"cell_type": "code",
|
1141 |
+
"execution_count": 15,
|
1142 |
+
"id": "4d9476e1",
|
1143 |
+
"metadata": {},
|
1144 |
+
"outputs": [],
|
1145 |
+
"source": [
|
1146 |
+
"from peft import PeftModel, PeftConfig\n",
|
1147 |
+
"\n",
|
1148 |
+
"peft_model_id = f\"{dataset_name}_{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}\".replace(\n",
|
1149 |
+
" \"/\", \"_\"\n",
|
1150 |
+
")\n",
|
1151 |
+
"\n",
|
1152 |
+
"config = PeftConfig.from_pretrained(peft_model_id)\n",
|
1153 |
+
"model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path)\n",
|
1154 |
+
"model = PeftModel.from_pretrained(model, peft_model_id)"
|
1155 |
+
]
|
1156 |
+
},
|
1157 |
+
{
|
1158 |
+
"cell_type": "code",
|
1159 |
+
"execution_count": 33,
|
1160 |
+
"id": "ebe174a6",
|
1161 |
+
"metadata": {},
|
1162 |
+
"outputs": [
|
1163 |
+
{
|
1164 |
+
"name": "stdout",
|
1165 |
+
"output_type": "stream",
|
1166 |
+
"text": [
|
1167 |
+
"@greateranglia Ok thanks...\n",
|
1168 |
+
"{'input_ids': tensor([[227985, 5484, 915, 2566, 14173, 2960, 29906, 387, 20706,\n",
|
1169 |
+
" 49337, 1369, 77658, 915, 210]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])}\n",
|
1170 |
+
"tensor([[227985, 5484, 915, 2566, 14173, 2960, 29906, 387, 20706,\n",
|
1171 |
+
" 49337, 1369, 77658, 915, 210, 1936, 106863, 3]],\n",
|
1172 |
+
" device='cuda:0')\n",
|
1173 |
+
"['Tweet text : @greateranglia Ok thanks... Label : no complaint']\n"
|
1174 |
+
]
|
1175 |
+
}
|
1176 |
+
],
|
1177 |
+
"source": [
|
1178 |
+
"model.to(device)\n",
|
1179 |
+
"model.eval()\n",
|
1180 |
+
"i = 4\n",
|
1181 |
+
"inputs = tokenizer(f'{text_column} : {dataset[\"test\"][i][\"Tweet text\"]} Label : ', return_tensors=\"pt\")\n",
|
1182 |
+
"print(dataset[\"test\"][i][\"Tweet text\"])\n",
|
1183 |
+
"print(inputs)\n",
|
1184 |
+
"\n",
|
1185 |
+
"with torch.no_grad():\n",
|
1186 |
+
" inputs = {k: v.to(device) for k, v in inputs.items()}\n",
|
1187 |
+
" outputs = model.generate(\n",
|
1188 |
+
" input_ids=inputs[\"input_ids\"], attention_mask=inputs[\"attention_mask\"], max_new_tokens=10, eos_token_id=3\n",
|
1189 |
+
" )\n",
|
1190 |
+
" print(outputs)\n",
|
1191 |
+
" print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))"
|
1192 |
+
]
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"cell_type": "code",
|
1196 |
+
"execution_count": null,
|
1197 |
+
"id": "24041ee1",
|
1198 |
+
"metadata": {},
|
1199 |
+
"outputs": [],
|
1200 |
+
"source": []
|
1201 |
+
}
|
1202 |
+
],
|
1203 |
+
"metadata": {
|
1204 |
+
"kernelspec": {
|
1205 |
+
"display_name": "Python 3 (ipykernel)",
|
1206 |
+
"language": "python",
|
1207 |
+
"name": "python3"
|
1208 |
+
},
|
1209 |
+
"language_info": {
|
1210 |
+
"codemirror_mode": {
|
1211 |
+
"name": "ipython",
|
1212 |
+
"version": 3
|
1213 |
+
},
|
1214 |
+
"file_extension": ".py",
|
1215 |
+
"mimetype": "text/x-python",
|
1216 |
+
"name": "python",
|
1217 |
+
"nbconvert_exporter": "python",
|
1218 |
+
"pygments_lexer": "ipython3",
|
1219 |
+
"version": "3.10.5"
|
1220 |
+
},
|
1221 |
+
"vscode": {
|
1222 |
+
"interpreter": {
|
1223 |
+
"hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
|
1224 |
+
}
|
1225 |
+
}
|
1226 |
+
},
|
1227 |
+
"nbformat": 4,
|
1228 |
+
"nbformat_minor": 5
|
1229 |
+
}
|