Spaces:
Sleeping
Sleeping
File size: 4,512 Bytes
2aba93c 737c008 2aba93c 737c008 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
import os
import cv2
import imutils
import torch
import timm
import einops
import tqdm
import numpy as np
import gradio as gr
from cotracker.utils.visualizer import Visualizer
def parse_video(video_file):
vs = cv2.VideoCapture(video_file)
frames = []
while True:
(gotit, frame) = vs.read()
if frame is not None:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(frame)
if not gotit:
break
return np.stack(frames)
def cotracker_demo(
input_video,
grid_size: int = 10,
grid_query_frame: int = 0,
backward_tracking: bool = False,
tracks_leave_trace: bool = False
):
load_video = parse_video(input_video)
grid_query_frame = min(len(load_video)-1, grid_query_frame)
load_video = torch.from_numpy(load_video).permute(0, 3, 1, 2)[None].float()
model = torch.hub.load("facebookresearch/co-tracker", "cotracker_w8")
if torch.cuda.is_available():
model = model.cuda()
load_video = load_video.cuda()
pred_tracks, pred_visibility = model(
load_video,
grid_size=grid_size,
grid_query_frame=grid_query_frame,
backward_tracking=backward_tracking
)
linewidth = 2
if grid_size < 10:
linewidth = 4
elif grid_size < 20:
linewidth = 3
vis = Visualizer(
save_dir=os.path.join(os.path.dirname(__file__), "results"),
grayscale=False,
pad_value=100,
fps=10,
linewidth=linewidth,
show_first_frame=5,
tracks_leave_trace= -1 if tracks_leave_trace else 0,
)
import time
def current_milli_time():
return round(time.time() * 1000)
filename = str(current_milli_time())
vis.visualize(
load_video.cpu(),
tracks=pred_tracks.cpu(),
visibility=pred_visibility.cpu(),
filename=filename,
query_frame=grid_query_frame,
)
return os.path.join(
os.path.dirname(__file__), "results", f"{filename}_pred_track.mp4"
)
apple = os.path.join(os.path.dirname(__file__), "videos", "apple.mp4")
bear = os.path.join(os.path.dirname(__file__), "videos", "bear.mp4")
paragliding_launch = os.path.join(os.path.dirname(__file__), "videos", "paragliding-launch.mp4")
paragliding = os.path.join(os.path.dirname(__file__), "videos", "paragliding.mp4")
app = gr.Interface(
title = "🎨 CoTracker: It is Better to Track Together",
description = "<div style='text-align: left;'> \
<p>Welcome to <a href='http://co-tracker.github.io' target='_blank'>CoTracker</a>! This space demonstrates point (pixel) tracking in videos. \
Points are sampled on a regular grid and are tracked jointly. </p> \
<p> To get started, simply upload your <b>.mp4</b> video in landscape orientation or click on one of the example videos to load them. The shorter the video, the faster the processing. We recommend submitting short videos of length <b>2-7 seconds</b>.</p> \
<ul style='display: inline-block; text-align: left;'> \
<li>The total number of grid points is the square of <b>Grid Size</b>.</li> \
<li>To specify the starting frame for tracking, adjust <b>Grid Query Frame</b>. Tracks will be visualized only after the selected frame.</li> \
<li>Use <b>Backward Tracking</b> to track points from the selected frame in both directions.</li> \
<li>Check <b>Visualize Track Traces</b> to visualize traces of all the tracked points. </li> \
</ul> \
<p style='text-align: left'>For more details, check out our <a href='https://github.com/facebookresearch/co-tracker' target='_blank'>GitHub Repo</a> ⭐</p> \
</div>",
fn=cotracker_demo,
inputs=[
gr.Video(type="file", label="Input video", interactive=True),
gr.Slider(minimum=1, maximum=30, step=1, value=10, label="Grid Size"),
gr.Slider(minimum=0, maximum=30, step=1, default=0, label="Grid Query Frame"),
gr.Checkbox(label="Backward Tracking"),
gr.Checkbox(label="Visualize Track Traces"),
],
outputs=gr.Video(label="Video with predicted tracks"),
examples=[
[ apple, 10, 0, False, False ],
[ apple, 20, 30, True, False ],
[ bear, 10, 0, False, False ],
[ paragliding, 10, 0, False, False ],
[ paragliding_launch, 10, 0, False, False ],
],
cache_examples=True,
allow_flagging=False,
)
app.queue(max_size=20, concurrency_count=2).launch(debug=True)
|