File size: 21,446 Bytes
541f198
 
 
 
2aba93c
541f198
 
 
 
 
 
2aba93c
541f198
2aba93c
541f198
 
 
542ca08
2aba93c
 
 
541f198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
692b08f
541f198
 
 
aec5805
541f198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6d3990
541f198
 
2aba93c
541f198
2aba93c
541f198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2aba93c
 
541f198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
542ca08
541f198
 
 
 
 
 
 
d6d3990
541f198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2aba93c
db33a01
541f198
2aba93c
541f198
 
 
 
 
 
 
 
 
 
 
 
 
d6d3990
541f198
 
 
 
 
 
 
d6d3990
541f198
 
 
 
d6d3990
541f198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6d3990
541f198
b3bcbf2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
# This Gradio demo code is from https://github.com/cvlab-kaist/locotrack/blob/main/demo/demo.py 
# We updated it to work with CoTracker3 models. We thank authors of LocoTrack
# for such an amazing Gradio demo.

import os
import sys
import uuid

import gradio as gr
import mediapy
import numpy as np
import cv2
import matplotlib
import torch
import colorsys
import random
from typing import List, Optional, Sequence, Tuple
import spaces
import numpy as np


# Generate random colormaps for visualizing different points.
def get_colors(num_colors: int) -> List[Tuple[int, int, int]]:
  """Gets colormap for points."""
  colors = []
  for i in np.arange(0.0, 360.0, 360.0 / num_colors):
    hue = i / 360.0
    lightness = (50 + np.random.rand() * 10) / 100.0
    saturation = (90 + np.random.rand() * 10) / 100.0
    color = colorsys.hls_to_rgb(hue, lightness, saturation)
    colors.append(
        (int(color[0] * 255), int(color[1] * 255), int(color[2] * 255))
    )
  random.shuffle(colors)
  return colors

def get_points_on_a_grid(
    size: int,
    extent: Tuple[float, ...],
    center: Optional[Tuple[float, ...]] = None,
    device: Optional[torch.device] = torch.device("cpu"),
):
    r"""Get a grid of points covering a rectangular region

    `get_points_on_a_grid(size, extent)` generates a :attr:`size` by
    :attr:`size` grid fo points distributed to cover a rectangular area
    specified by `extent`.

    The `extent` is a pair of integer :math:`(H,W)` specifying the height
    and width of the rectangle.

    Optionally, the :attr:`center` can be specified as a pair :math:`(c_y,c_x)`
    specifying the vertical and horizontal center coordinates. The center
    defaults to the middle of the extent.

    Points are distributed uniformly within the rectangle leaving a margin
    :math:`m=W/64` from the border.

    It returns a :math:`(1, \text{size} \times \text{size}, 2)` tensor of
    points :math:`P_{ij}=(x_i, y_i)` where

    .. math::
        P_{ij} = \left(
             c_x + m -\frac{W}{2} + \frac{W - 2m}{\text{size} - 1}\, j,~
             c_y + m -\frac{H}{2} + \frac{H - 2m}{\text{size} - 1}\, i
        \right)

    Points are returned in row-major order.

    Args:
        size (int): grid size.
        extent (tuple): height and with of the grid extent.
        center (tuple, optional): grid center.
        device (str, optional): Defaults to `"cpu"`.

    Returns:
        Tensor: grid.
    """
    if size == 1:
        return torch.tensor([extent[1] / 2, extent[0] / 2], device=device)[None, None]

    if center is None:
        center = [extent[0] / 2, extent[1] / 2]

    margin = extent[1] / 64
    range_y = (margin - extent[0] / 2 + center[0], extent[0] / 2 + center[0] - margin)
    range_x = (margin - extent[1] / 2 + center[1], extent[1] / 2 + center[1] - margin)
    grid_y, grid_x = torch.meshgrid(
        torch.linspace(*range_y, size, device=device),
        torch.linspace(*range_x, size, device=device),
        indexing="ij",
    )
    return torch.stack([grid_x, grid_y], dim=-1).reshape(1, -1, 2)

def paint_point_track(
    frames: np.ndarray,
    point_tracks: np.ndarray,
    visibles: np.ndarray,
    colormap: Optional[List[Tuple[int, int, int]]] = None,
) -> np.ndarray:
  """Converts a sequence of points to color code video.

  Args:
    frames: [num_frames, height, width, 3], np.uint8, [0, 255]
    point_tracks: [num_points, num_frames, 2], np.float32, [0, width / height]
    visibles: [num_points, num_frames], bool
    colormap: colormap for points, each point has a different RGB color.

  Returns:
    video: [num_frames, height, width, 3], np.uint8, [0, 255]
  """
  num_points, num_frames = point_tracks.shape[0:2]
  if colormap is None:
    colormap = get_colors(num_colors=num_points)
  height, width = frames.shape[1:3]
  dot_size_as_fraction_of_min_edge = 0.015
  radius = int(round(min(height, width) * dot_size_as_fraction_of_min_edge))
  diam = radius * 2 + 1
  quadratic_y = np.square(np.arange(diam)[:, np.newaxis] - radius - 1)
  quadratic_x = np.square(np.arange(diam)[np.newaxis, :] - radius - 1)
  icon = (quadratic_y + quadratic_x) - (radius**2) / 2.0
  sharpness = 0.15
  icon = np.clip(icon / (radius * 2 * sharpness), 0, 1)
  icon = 1 - icon[:, :, np.newaxis]
  icon1 = np.pad(icon, [(0, 1), (0, 1), (0, 0)])
  icon2 = np.pad(icon, [(1, 0), (0, 1), (0, 0)])
  icon3 = np.pad(icon, [(0, 1), (1, 0), (0, 0)])
  icon4 = np.pad(icon, [(1, 0), (1, 0), (0, 0)])

  video = frames.copy()
  for t in range(num_frames):
    # Pad so that points that extend outside the image frame don't crash us
    image = np.pad(
        video[t],
        [
            (radius + 1, radius + 1),
            (radius + 1, radius + 1),
            (0, 0),
        ],
    )
    for i in range(num_points):
      # The icon is centered at the center of a pixel, but the input coordinates
      # are raster coordinates.  Therefore, to render a point at (1,1) (which
      # lies on the corner between four pixels), we need 1/4 of the icon placed
      # centered on the 0'th row, 0'th column, etc.  We need to subtract
      # 0.5 to make the fractional position come out right.
      x, y = point_tracks[i, t, :] + 0.5
      x = min(max(x, 0.0), width)
      y = min(max(y, 0.0), height)

      if visibles[i, t]:
        x1, y1 = np.floor(x).astype(np.int32), np.floor(y).astype(np.int32)
        x2, y2 = x1 + 1, y1 + 1

        # bilinear interpolation
        patch = (
            icon1 * (x2 - x) * (y2 - y)
            + icon2 * (x2 - x) * (y - y1)
            + icon3 * (x - x1) * (y2 - y)
            + icon4 * (x - x1) * (y - y1)
        )
        x_ub = x1 + 2 * radius + 2
        y_ub = y1 + 2 * radius + 2
        image[y1:y_ub, x1:x_ub, :] = (1 - patch) * image[
            y1:y_ub, x1:x_ub, :
        ] + patch * np.array(colormap[i])[np.newaxis, np.newaxis, :]

      # Remove the pad
      video[t] = image[
          radius + 1 : -radius - 1, radius + 1 : -radius - 1
      ].astype(np.uint8)
  return video


PREVIEW_WIDTH = 768 # Width of the preview video
VIDEO_INPUT_RESO = (384, 512) # Resolution of the input video
POINT_SIZE = 4 # Size of the query point in the preview video
FRAME_LIMIT = 256000000000 # Limit the number of frames to process


def get_point(frame_num, video_queried_preview, query_points, query_points_color, query_count, evt: gr.SelectData):
    print(f"You selected {(evt.index[0], evt.index[1], frame_num)} with color: {(query_points_color)}")

    current_frame = video_queried_preview[int(frame_num)]

    # Get the mouse click
    query_points[int(frame_num)].append((evt.index[0], evt.index[1], frame_num))

    # Choose the color for the point from matplotlib colormap
    color = matplotlib.colormaps.get_cmap("gist_rainbow")(query_count % 20 / 20)
    color = (int(color[0] * 255), int(color[1] * 255), int(color[2] * 255))
    # print(f"Color: {color}")
    query_points_color[int(frame_num)].append(color)

    # Draw the point on the frame
    x, y = evt.index
    current_frame_draw = cv2.circle(current_frame, (x, y), POINT_SIZE, color, -1)

    # Update the frame
    video_queried_preview[int(frame_num)] = current_frame_draw

    # Update the query count
    query_count += 1
    return (
        current_frame_draw, # Updated frame for preview
        video_queried_preview, # Updated preview video
        query_points, # Updated query points
        query_points_color, # Updated query points color
        query_count # Updated query count
    )


def undo_point(frame_num, video_preview, video_queried_preview, query_points, query_points_color, query_count):
    if len(query_points[int(frame_num)]) == 0:
        return (
            video_queried_preview[int(frame_num)],
            video_queried_preview,
            query_points,
            query_points_color,
            query_count
        )

    # Get the last point
    query_points[int(frame_num)].pop(-1)
    query_points_color[int(frame_num)].pop(-1)

    # Redraw the frame
    current_frame_draw = video_preview[int(frame_num)].copy()
    for point, color in zip(query_points[int(frame_num)], query_points_color[int(frame_num)]):
        x, y, _ = point
        current_frame_draw = cv2.circle(current_frame_draw, (x, y), POINT_SIZE, color, -1)

    # Update the query count
    query_count -= 1

    # Update the frame
    video_queried_preview[int(frame_num)] = current_frame_draw
    return (
        current_frame_draw, # Updated frame for preview
        video_queried_preview, # Updated preview video
        query_points, # Updated query points
        query_points_color, # Updated query points color
        query_count # Updated query count
    )


def clear_frame_fn(frame_num, video_preview, video_queried_preview, query_points, query_points_color, query_count):
    query_count -= len(query_points[int(frame_num)])

    query_points[int(frame_num)] = []
    query_points_color[int(frame_num)] = []

    video_queried_preview[int(frame_num)] = video_preview[int(frame_num)].copy()

    return (
        video_preview[int(frame_num)], # Set the preview frame to the original frame
        video_queried_preview, 
        query_points, # Cleared query points
        query_points_color, # Cleared query points color
        query_count # New query count
    )



def clear_all_fn(frame_num, video_preview):
    return (
        video_preview[int(frame_num)],
        video_preview.copy(),
        [[] for _ in range(len(video_preview))],
        [[] for _ in range(len(video_preview))],
        0
    )


def choose_frame(frame_num, video_preview_array):
    return video_preview_array[int(frame_num)]


def preprocess_video_input(video_path):
    video_arr = mediapy.read_video(video_path)
    video_fps = video_arr.metadata.fps
    num_frames = video_arr.shape[0]
    if num_frames > FRAME_LIMIT:
        gr.Warning(f"The video is too long. Only the first {FRAME_LIMIT} frames will be used.", duration=5)
        video_arr = video_arr[:FRAME_LIMIT]
        num_frames = FRAME_LIMIT

    # Resize to preview size for faster processing, width = PREVIEW_WIDTH
    height, width = video_arr.shape[1:3]
    new_height, new_width = int(PREVIEW_WIDTH * height / width), PREVIEW_WIDTH

    preview_video = mediapy.resize_video(video_arr, (new_height, new_width))
    input_video = mediapy.resize_video(video_arr, VIDEO_INPUT_RESO)

    preview_video = np.array(preview_video)
    input_video = np.array(input_video)
    
    interactive = True

    return (
        video_arr, # Original video
        preview_video, # Original preview video, resized for faster processing
        preview_video.copy(), # Copy of preview video for visualization
        input_video, # Resized video input for model
        # None, # video_feature, # Extracted feature
        video_fps, # Set the video FPS
        gr.update(open=False), # Close the video input drawer
        # tracking_mode, # Set the tracking mode
        preview_video[0], # Set the preview frame to the first frame
        gr.update(minimum=0, maximum=num_frames - 1, value=0, interactive=interactive), # Set slider interactive
        [[] for _ in range(num_frames)], # Set query_points to empty
        [[] for _ in range(num_frames)], # Set query_points_color to empty
        [[] for _ in range(num_frames)], 
        0, # Set query count to 0
        gr.update(interactive=interactive), # Make the buttons interactive
        gr.update(interactive=interactive),
        gr.update(interactive=interactive),
        gr.update(interactive=True),
    )

@spaces.GPU
def track(
    video_preview,
    video_input, 
    video_fps, 
    query_points, 
    query_points_color, 
    query_count, 
):
    tracking_mode = 'selected'
    if query_count == 0: 
        tracking_mode='grid'
    
    device = "cuda" if torch.cuda.is_available() else "cpu"
    dtype = torch.float if device == "cuda" else torch.float

    # Convert query points to tensor, normalize to input resolution
    if tracking_mode!='grid':
        query_points_tensor = []
        for frame_points in query_points:
            query_points_tensor.extend(frame_points)
        
        query_points_tensor = torch.tensor(query_points_tensor).float()
        query_points_tensor *= torch.tensor([
            VIDEO_INPUT_RESO[1], VIDEO_INPUT_RESO[0], 1
        ]) / torch.tensor([
            [video_preview.shape[2], video_preview.shape[1], 1]
        ])
        query_points_tensor = query_points_tensor[None].flip(-1).to(device, dtype) # xyt -> tyx
        query_points_tensor = query_points_tensor[:, :, [0, 2, 1]] # tyx -> txy

    video_input = torch.tensor(video_input).unsqueeze(0).to(device, dtype)

    model = torch.hub.load("facebookresearch/co-tracker", "cotracker3_online")
    model = model.to(device)

    video_input = video_input.permute(0, 1, 4, 2, 3)
    if tracking_mode=='grid':
        xy = get_points_on_a_grid(15, video_input.shape[3:], device=device)
        queries = torch.cat([torch.zeros_like(xy[:, :, :1]), xy], dim=2).to(device)  #
        add_support_grid=False
        cmap = matplotlib.colormaps.get_cmap("gist_rainbow")
        query_points_color = [[]]
        query_count = queries.shape[1]
        for i in range(query_count):
            # Choose the color for the point from matplotlib colormap
            color = cmap(i / float(query_count))
            color = (int(color[0] * 255), int(color[1] * 255), int(color[2] * 255))
            query_points_color[0].append(color)

    else:
        queries = query_points_tensor
        add_support_grid=True

    model(video_chunk=video_input, is_first_step=True, grid_size=0, queries=queries, add_support_grid=add_support_grid)
    # 
    for ind in range(0, video_input.shape[1] - model.step, model.step):
        pred_tracks, pred_visibility = model(
            video_chunk=video_input[:, ind : ind + model.step * 2],
            grid_size=0, 
            queries=queries, 
            add_support_grid=add_support_grid
        )  # B T N 2,  B T N 1
    tracks = (pred_tracks * torch.tensor([video_preview.shape[2], video_preview.shape[1]]).to(device) / torch.tensor([VIDEO_INPUT_RESO[1], VIDEO_INPUT_RESO[0]]).to(device))[0].permute(1, 0, 2).cpu().numpy()
    pred_occ = pred_visibility[0].permute(1, 0).cpu().numpy()

    # make color array
    colors = []
    for frame_colors in query_points_color:
        colors.extend(frame_colors)
    colors = np.array(colors)
    
    painted_video = paint_point_track(video_preview,tracks,pred_occ,colors)

    # save video
    video_file_name = uuid.uuid4().hex + ".mp4"
    video_path = os.path.join(os.path.dirname(__file__), "tmp")
    video_file_path = os.path.join(video_path, video_file_name)
    os.makedirs(video_path, exist_ok=True)

    mediapy.write_video(video_file_path, painted_video, fps=video_fps)

    return video_file_path


with gr.Blocks() as demo:
    video = gr.State()
    video_queried_preview = gr.State()
    video_preview = gr.State()
    video_input = gr.State()
    video_fps = gr.State(24)

    query_points = gr.State([])
    query_points_color = gr.State([])
    is_tracked_query = gr.State([])
    query_count = gr.State(0)

    gr.Markdown("# 🎨 CoTracker3: Simpler and Better Point Tracking by Pseudo-Labelling Real Videos")
    gr.Markdown("<div style='text-align: left;'> \
    <p>Welcome to <a href='https://cotracker3.github.io/' target='_blank'>CoTracker</a>! This space demonstrates point (pixel) tracking in videos. \
    The model tracks points on a grid or points selected by you.  </p> \
    <p> To get started, simply upload your <b>.mp4</b> video or click on one of the example videos to load them. The shorter the video, the faster the processing. We recommend submitting short videos of length <b>2-7 seconds</b>.</p> \
    <p> After you uploaded a video, please click \"Submit\" and then click \"Track\" for grid tracking or specify points you want to track before clicking. Enjoy the results! </p>\
    <p style='text-align: left'>For more details, check out our <a href='https://github.com/facebookresearch/co-tracker' target='_blank'>GitHub Repo</a> ⭐. We thank the authors of LocoTrack for their interactive demo.</p> \
    </div>"
    )
    

    gr.Markdown("## First step: upload your video or select an example video, and click submit.")
    with gr.Row():
        

        with gr.Accordion("Your video input", open=True) as video_in_drawer:
            video_in = gr.Video(label="Video Input", format="mp4")
            submit = gr.Button("Submit", scale=0)

            import os
            apple = os.path.join(os.path.dirname(__file__), "videos", "apple.mp4")
            bear = os.path.join(os.path.dirname(__file__), "videos", "bear.mp4")
            paragliding_launch = os.path.join(
                os.path.dirname(__file__), "videos", "paragliding-launch.mp4"
            )
            paragliding = os.path.join(os.path.dirname(__file__), "videos", "paragliding.mp4")
            cat = os.path.join(os.path.dirname(__file__), "videos", "cat.mp4")
            pillow = os.path.join(os.path.dirname(__file__), "videos", "pillow.mp4")
            teddy = os.path.join(os.path.dirname(__file__), "videos", "teddy.mp4")
            backpack = os.path.join(os.path.dirname(__file__), "videos", "backpack.mp4")


            gr.Examples(examples=[bear, apple, paragliding, paragliding_launch, cat, pillow, teddy, backpack], 
                        inputs = [
                            video_in
                        ],
                        )


    gr.Markdown("## Second step: Simply click \"Track\" to track a grid of points or select query points on the video before clicking")
    with gr.Row():
        with gr.Column():
            with gr.Row():
                query_frames = gr.Slider(
                    minimum=0, maximum=100, value=0, step=1, label="Choose Frame", interactive=False)
            with gr.Row():
                undo = gr.Button("Undo", interactive=False)
                clear_frame = gr.Button("Clear Frame", interactive=False)
                clear_all = gr.Button("Clear All", interactive=False)

            with gr.Row():
                current_frame = gr.Image(
                    label="Click to add query points", 
                    type="numpy",
                    interactive=False
                )
            
            with gr.Row():
                track_button = gr.Button("Track", interactive=False)

        with gr.Column():
            output_video = gr.Video(
                label="Output Video",
                interactive=False,
                autoplay=True,
                loop=True,
            )

    

    submit.click(
        fn = preprocess_video_input, 
        inputs = [video_in], 
        outputs = [
            video,
            video_preview,
            video_queried_preview,
            video_input,
            video_fps,
            video_in_drawer,
            current_frame,
            query_frames,
            query_points,
            query_points_color,
            is_tracked_query,
            query_count,
            undo,
            clear_frame,
            clear_all,
            track_button,
        ],
        queue = False
    )

    query_frames.change(
        fn = choose_frame,
        inputs = [query_frames, video_queried_preview],
        outputs = [
            current_frame,
        ],
        queue = False
    )

    current_frame.select(
        fn = get_point, 
        inputs = [
            query_frames,
            video_queried_preview,
            query_points,
            query_points_color,
            query_count,
        ], 
        outputs = [
            current_frame,
            video_queried_preview,
            query_points,
            query_points_color,
            query_count
        ], 
        queue = False
    )
    
    undo.click(
        fn = undo_point,
        inputs = [
            query_frames,
            video_preview,
            video_queried_preview,
            query_points,
            query_points_color,
            query_count
        ],
        outputs = [
            current_frame,
            video_queried_preview,
            query_points,
            query_points_color,
            query_count
        ],
        queue = False
    )

    clear_frame.click(
        fn = clear_frame_fn,
        inputs = [
            query_frames,
            video_preview,
            video_queried_preview,
            query_points,
            query_points_color,
            query_count
        ],
        outputs = [
            current_frame,
            video_queried_preview,
            query_points,
            query_points_color,
            query_count
        ],
        queue = False
    )

    clear_all.click(
        fn = clear_all_fn,
        inputs = [
            query_frames,
            video_preview,
        ],
        outputs = [
            current_frame,
            video_queried_preview,
            query_points,
            query_points_color,
            query_count
        ],
        queue = False
    )

    
    track_button.click(
        fn = track,
        inputs = [
            video_preview,
            video_input,
            video_fps,
            query_points,
            query_points_color,
            query_count,
        ],
        outputs = [
            output_video,
        ],
        queue = True,
    )

    
demo.launch(show_api=False, show_error=True, debug=False, share=False)