Spaces:
Runtime error
Runtime error
"""============= | |
Example : extract_record.py | |
Author : Saifeddine ALOUI (ParisNeo) | |
Description : | |
Make sure you install deepface | |
pip install deepface | |
<================""" | |
import numpy as np | |
from pathlib import Path | |
import cv2 | |
from numpy.lib.type_check import imag | |
from FaceAnalyzer import FaceAnalyzer | |
from pathlib import Path | |
import pickle | |
from deepface import DeepFace | |
# Number of images to use to build the embedding | |
nb_images=50 | |
# Build face analyzer while specifying that we want to extract just a single face | |
fa = FaceAnalyzer(max_nb_faces=3) | |
box_colors=[ | |
(255,0,0), | |
(0,255,0), | |
(0,0,255), | |
(255,255,0), | |
(255,0,255), | |
] | |
import gradio as gr | |
import numpy as np | |
class UI(): | |
def __init__(self) -> None: | |
# If faces path is empty then make it | |
self.faces_path = Path(__file__).parent/"faces" | |
if not self.faces_path.exists(): | |
self.faces_path.mkdir(parents=True, exist_ok=True) | |
self.i=0 | |
self.embeddings_cloud = [] | |
self.is_recording=False | |
self.face_name=None | |
self.nb_images = 20 | |
self.nb_faces = 3 | |
# Important to set. If higher than this distance, the face is considered unknown | |
self.threshold = 3e-1 | |
self.faces_db_preprocessed_path = Path(__file__).parent/"faces_db_preprocessed" | |
self.current_name = None | |
self.current_face_files = [] | |
self.draw_landmarks = True | |
self.webcam_process = False | |
self.upgrade_faces() | |
try: | |
DeepFace.represent(np.zeros((100,100,3)), enforce_detection=False) | |
except Exception as ex: | |
pass | |
with gr.Blocks() as demo: | |
self.faces = gr.State([]) | |
self.distance_type = gr.State("cosine") | |
gr.Markdown("## FaceAnalyzer face recognition test") | |
with gr.Tabs(): | |
with gr.TabItem('Image Recognize'): | |
with gr.Blocks(): | |
with gr.Row(): | |
with gr.Column(): | |
self.rt_inp_img = gr.Image(label="Input Image") | |
with gr.Column(): | |
self.rt_rec_img = gr.Image(label="Output Image") | |
self.rt_inp_img.change(self.process_image, inputs=self.rt_inp_img, outputs=self.rt_rec_img, show_progress=True) | |
with gr.TabItem('Add face from files'): | |
with gr.Blocks(): | |
with gr.Row(): | |
with gr.Column(): | |
self.add_file = gr.Files(label="Files",file_types=["image"]) | |
with gr.Row(): | |
self.txtFace_name2 = gr.Textbox(label="face_name") | |
self.btn_start = gr.Button("Build face embeddings") | |
self.status = gr.Label(label="Status") | |
self.gallery = gr.Gallery( | |
label="Uploaded Images", show_label=True, height=300, elem_id="gallery", visible=False | |
).style(grid=[8], height="auto") | |
self.btn_clear = gr.Button("Clear Gallery") | |
self.btn_start.click(self.record_from_files, inputs=[self.gallery, self.txtFace_name2], outputs=self.status, show_progress=True) | |
self.btn_clear.click(self.clear_galery,[],[self.gallery, self.add_file]) | |
self.add_file.change(self.add_files, self.add_file, [self.gallery, self.faces]) | |
with gr.TabItem('Known Faces List'): | |
with gr.Blocks(): | |
with gr.Row(): | |
with gr.Column(): | |
self.btn_reset_faces = gr.Button("clear faces list") | |
self.btn_get_known_faces_list = gr.Button("get known faces list") | |
self.faces_list_status = gr.Label(label="Status") | |
self.btn_reset_faces.click(self.clear_faces,[],[self.faces_list_status]) | |
self.btn_get_known_faces_list.click(self.get_known_faces_list,[],[self.faces_list_status]) | |
with gr.Row(): | |
with gr.Accordion(label="Options", open=False): | |
self.sld_threshold = gr.Slider(1e-2,10,4e-1,step=1e-2,label="Recognition threshold") | |
self.sld_threshold.change(self.set_th,inputs=self.sld_threshold) | |
self.sld_nb_images = gr.Slider(2,50,20,label="Number of images") | |
self.sld_nb_images.change(self.set_nb_images, self.sld_nb_images) | |
self.cb_draw_landmarks = gr.Checkbox(label="Draw landmarks", value=True) | |
self.cb_draw_landmarks.change(self.set_draw_landmarks, self.cb_draw_landmarks) | |
self.sld_nb_faces = gr.Slider(1,50,3,label="Maximum number of faces") | |
self.sld_nb_faces.change(self.set_nb_faces, self.sld_nb_faces) | |
self.rd_distance_type = gr.Radio( | |
["cosine", "L1", "L2"], label="Distance", value="cosine" | |
) | |
self.rd_distance_type.change(self.change_distance, self.rd_distance_type, self.distance_type) | |
demo.queue().launch() | |
def get_known_faces_list(self): | |
return ", ".join(self.known_faces_names) | |
def clear_directory(self, directory_path): | |
""" | |
Recursively removes all files and subdirectories within the specified directory. | |
Args: | |
directory_path (str): The path to the directory to clear. | |
Returns: | |
None | |
""" | |
directory = Path(directory_path) | |
for item in directory.iterdir(): | |
if item.is_file(): | |
item.unlink() | |
elif item.is_dir(): | |
self.clear_directory(item) | |
item.rmdir() | |
def clear_faces(self): | |
""" | |
clears faces | |
""" | |
self.clear_directory(self.faces_path) | |
self.upgrade_faces() | |
return "Faces removed" | |
def change_distance(self, type): | |
return self.distance_type.update(value=type) | |
def clear_galery(self): | |
return self.gallery.update(value=[]), self.add_file.update(value=[]) | |
def start_webcam(self): | |
self.webcam_process=not self.webcam_process | |
return self.start_streaming.update(value="Stop webcam") if self.webcam_process else self.start_streaming.update(value="Start webcam") | |
def add_files(self, files): | |
current_face_files = [] | |
if files is not None: | |
for file in files: | |
img = cv2.cvtColor(cv2.imread(file.name), cv2.COLOR_BGR2RGB) | |
current_face_files.append(img) | |
return current_face_files, current_face_files | |
else: | |
return [] | |
def set_th(self, value): | |
self.threshold=value | |
def set_nb_images(self, value): | |
self.nb_images=value | |
def set_draw_landmarks(self, value): | |
self.draw_landmarks=value | |
def set_nb_faces(self,nb_faces): | |
self.nb_faces = nb_faces | |
fa.nb_faces = nb_faces | |
def cosine_distance(self, u, v): | |
""" | |
Computes the cosine distance between two vectors. | |
Parameters: | |
u (numpy array): A 1-dimensional numpy array representing the first vector. | |
v (numpy array): A 1-dimensional numpy array representing the second vector. | |
Returns: | |
float: The cosine distance between the two vectors. | |
""" | |
dot_product = np.dot(u, v) | |
norm_u = np.linalg.norm(u) | |
norm_v = np.linalg.norm(v) | |
return 1 - (dot_product / (norm_u * norm_v)) | |
def upgrade_faces(self): | |
# Load faces | |
print("Reloading faces") | |
self.known_faces=[] | |
self.known_faces_names=[] | |
face_files = [f for f in self.faces_path.iterdir() if f.name.endswith("pkl")] | |
for file in face_files: | |
with open(str(file),"rb") as f: | |
finger_print = pickle.load(f) | |
self.known_faces.append(finger_print) | |
self.known_faces_names.append(file.stem) | |
# if hasattr(self, "faces_list"): | |
# self.faces_list.update(value=[[n] for n in self.known_faces_names]) | |
def set_face_name(self, face_name): | |
self.face_name=face_name | |
return f"face name set to {self.face_name}" | |
def start_stop(self): | |
self.is_recording=True | |
def process_db(self, images): | |
for i,image in enumerate(images): | |
# Opencv uses BGR format while mediapipe uses RGB format. So we need to convert it to RGB before processing the image | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
image = cv2.resize(image, (640, 480)) | |
# Process the image to extract faces and draw the masks on the face in the image | |
fa.process(image) | |
if fa.nb_faces>0: | |
if fa.nb_faces>1: | |
print("Found too many faces!!") | |
face = fa.faces[0] | |
try: | |
# Get a realigned version of the landmarksx | |
vertices = face.get_face_outer_vertices() | |
image = face.getFaceBox(image, vertices,margins=(30,30,30,30)) | |
embedding = DeepFace.represent(image, enforce_detection=False)[0]["embedding"] | |
embeddings_cloud.append(embedding) | |
cv2.imwrite(str(self.faces_db_preprocessed_path/f"im_{i}.png"), cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) | |
except Exception as ex: | |
print(ex) | |
embeddings_cloud = np.array(embeddings_cloud) | |
embeddings_cloud_mean = embeddings_cloud.mean(axis=0) | |
embeddings_cloud_inv_cov = np.linalg.inv(np.cov(embeddings_cloud.T)) | |
# Now we save it. | |
# create a dialog box to ask for the subject name | |
name = self.face_name | |
with open(str(self.faces_path/f"{name}.pkl"),"wb") as f: | |
pickle.dump({"mean":embeddings_cloud_mean, "inv_cov":embeddings_cloud_inv_cov},f) | |
print(f"Saved {name}") | |
def record_from_files(self, images, face_name): | |
if face_name is None or face_name=="": | |
self.embeddings_cloud=[] | |
self.is_recording=False | |
return "Please input a face name" | |
if images is not None: | |
for entry in images: | |
print(f"Processing image {entry['name']}") | |
image = cv2.cvtColor(cv2.imread(entry["name"]), cv2.COLOR_BGR2RGB) | |
if image is None: | |
return None | |
# Process the image to extract faces and draw the masks on the face in the image | |
if image.shape[1]>640: | |
image = cv2.resize(image,(int(640*(image.shape[1]/image.shape[0])),640)) | |
fa.image_size=(image.shape[1],image.shape[0],3) | |
# Process the image to extract faces and draw the masks on the face in the image | |
fa.process(image) | |
if fa.nb_faces>0: | |
print(f"Found {fa.nb_faces} faces") | |
try: | |
face = fa.faces[0] | |
vertices = face.get_face_outer_vertices() | |
image = face.getFaceBox(image, vertices, margins=(40,40,40,40)) | |
embedding = DeepFace.represent(image, enforce_detection=False)[0]["embedding"] | |
self.embeddings_cloud.append(embedding) | |
self.i+=1 | |
except Exception as ex: | |
print(ex) | |
# Now let's find out where the face lives inside the latent space (128 dimensions space) | |
embeddings_cloud = np.array(self.embeddings_cloud) | |
embeddings_cloud_mean = embeddings_cloud.mean(axis=0) | |
embeddings_cloud_inv_cov = embeddings_cloud.std(axis=0) | |
# Now we save it. | |
# create a dialog box to ask for the subject name | |
with open(str(self.faces_path/f"{face_name}.pkl"),"wb") as f: | |
pickle.dump({"mean":embeddings_cloud_mean, "inv_cov":embeddings_cloud_inv_cov},f) | |
print(f"Saved {face_name} embeddings") | |
self.i=0 | |
self.embeddings_cloud=[] | |
self.is_recording=False | |
self.upgrade_faces() | |
return f"Saved {face_name} embeddings" | |
else: | |
return "Waiting" | |
def process_webcam(self, image): | |
if not self.webcam_process: | |
return None | |
fa.image_size=(640, 480, 3) | |
# Process the image to extract faces and draw the masks on the face in the image | |
fa.process(image) | |
if fa.nb_faces>0: | |
bboxes_and_names=[] | |
for j in range(fa.nb_faces): | |
try: | |
face = fa.faces[j] | |
vertices = face.get_face_outer_vertices() | |
face_image = face.getFaceBox(image, vertices, margins=(40,40,40,40)) | |
embedding = DeepFace.represent(face_image, enforce_detection=False)[0]["embedding"] | |
if self.draw_landmarks: | |
face.draw_landmarks(image, color=(0,0,0)) | |
nearest_distance = 1e100 | |
nearest = 0 | |
for i, known_face in enumerate(self.known_faces): | |
if self.distance_type.value == "cosine": | |
# Cosine distance | |
distance = self.cosine_distance(known_face["mean"], embedding) | |
elif self.distance_type.value =="L1": | |
# absolute distance | |
distance = np.abs(known_face["mean"]-embedding).sum() | |
elif self.distance_type.value == "L2": | |
# absolute distance | |
distance = np.sqrt(np.square(known_face["mean"]-embedding).sum()) | |
if distance<nearest_distance: | |
nearest_distance = distance | |
nearest = i | |
bboxes_and_names.append([face.bounding_box, f"Unknown:{nearest_distance:.2e}" if nearest_distance>self.threshold else f"{self.known_faces_names[nearest]}:{nearest_distance:.2e}"]) | |
except Exception as ex: | |
pass | |
if len(bboxes_and_names)>0: | |
image = fa.draw_names_on_bboxes(image,bboxes_and_names,upscale=2) | |
# Return the resulting frame | |
return image | |
def process_image(self, image): | |
if image is None: | |
return None | |
# Process the image to extract faces and draw the masks on the face in the image | |
if image.shape[1]>640: | |
image = cv2.resize(image,(int(640*(image.shape[1]/image.shape[0])),640)) | |
fa.image_size=(image.shape[1],image.shape[0],3) | |
fa.process(image) | |
if fa.nb_faces>0: | |
bboxes_and_names=[] | |
for j in range(fa.nb_faces): | |
try: | |
face = fa.faces[j] | |
vertices = face.get_face_outer_vertices() | |
face_image = face.getFaceBox(image, vertices, margins=(40,40,40,40)) | |
embedding = DeepFace.represent(face_image, enforce_detection=False)[0]["embedding"] | |
if self.draw_landmarks: | |
face.draw_landmarks(image, color=(0,0,0)) | |
nearest_distance = 1e100 | |
nearest = 0 | |
for i, known_face in enumerate(self.known_faces): | |
if self.distance_type.value == "cosine": | |
# Cosine distance | |
distance = self.cosine_distance(known_face["mean"], embedding) | |
elif self.distance_type.value =="L1": | |
# absolute distance | |
distance = np.abs(known_face["mean"]-embedding).sum() | |
elif self.distance_type.value == "L2": | |
# absolute distance | |
distance = np.sqrt(np.square(known_face["mean"]-embedding).sum()) | |
if distance<nearest_distance: | |
nearest_distance = distance | |
nearest = i | |
bboxes_and_names.append([face.bounding_box, f"Unknown:{nearest_distance:.2e}" if nearest_distance>self.threshold else f"{self.known_faces_names[nearest]}:{nearest_distance:.2e}"]) | |
except Exception as ex: | |
image=face_image | |
if len(bboxes_and_names)>0: | |
image = fa.draw_names_on_bboxes(image,bboxes_and_names,upscale=2) | |
# Return the resulting frame | |
return image | |
ui = UI() | |